A multifractal zeta function for Gibbs measures supported on cookie-cutter setsBaker, S. (2013) A multifractal zeta function for Gibbs measures supported on cookie-cutter sets. Nonlinearity, 26 (4). pp. 1125-1142. ISSN 1361-6544
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1088/0951-7715/26/4/1125 Abstract/SummaryStarting with the work of Lapidus and van Frankenhuysen a number of papers have introduced zeta functions as a way of capturing multifractal information. In this paper we propose a new multifractal zeta function and show that under certain conditions the abscissa of convergence yields the Hausdorff multifractal spectrum for a class of measures.
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |