Accessibility navigation


Optimal infinity-quasiconformal immersions

Katzourakis, N. (2015) Optimal infinity-quasiconformal immersions. ESAIM Control Optimization & Calculus of Variations, 21 (2). pp. 561-582. ISSN 1262-3377

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1051/cocv/2014038

Abstract/Summary

For a Hamiltonian K ∈ C2(RN × n) and a map u:Ω ⊆ Rn − → RN, we consider the supremal functional (1) The “Euler−Lagrange” PDE associated to (1)is the quasilinear system (2) Here KP is the derivative and [ KP ] ⊥ is the projection on its nullspace. (1)and (2)are the fundamental objects of vector-valued Calculus of Variations in L∞ and first arose in recent work of the author [N. Katzourakis, J. Differ. Eqs. 253 (2012) 2123–2139; Commun. Partial Differ. Eqs. 39 (2014) 2091–2124]. Herein we apply our results to Geometric Analysis by choosing as K the dilation function which measures the deviation of u from being conformal. Our main result is that appropriately defined minimisers of (1)solve (2). Hence, PDE methods can be used to study optimised quasiconformal maps. Nonconvexity of K and appearance of interfaces where [ KP ] ⊥ is discontinuous cause extra difficulties. When n = N, this approach has previously been followed by Capogna−Raich ? and relates to Teichmüller’s theory. In particular, we disprove a conjecture appearing therein.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
ID Code:47110
Publisher:EDP Sciences

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation