Accessibility navigation


Analysis and clustering of residential customers energy behavioral demand using smart meter data

Haben, S., Singleton, C. and Grindrod, P. (2016) Analysis and clustering of residential customers energy behavioral demand using smart meter data. IEEE Transactions on Smart Grid, 7 (1). pp. 136-144. ISSN 1949-3053

[img]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.

512kB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1109/TSG.2015.2409786

Abstract/Summary

Clustering methods are increasingly being applied to residential smart meter data, providing a number of important opportunities for distribution network operators (DNOs) to manage and plan the low voltage networks. Clustering has a number of potential advantages for DNOs including, identifying suitable candidates for demand response and improving energy profile modelling. However, due to the high stochasticity and irregularity of household level demand, detailed analytics are required to define appropriate attributes to cluster. In this paper we present in-depth analysis of customer smart meter data to better understand peak demand and major sources of variability in their behaviour. We find four key time periods in which the data should be analysed and use this to form relevant attributes for our clustering. We present a finite mixture model based clustering where we discover 10 distinct behaviour groups describing customers based on their demand and their variability. Finally, using an existing bootstrapping technique we show that the clustering is reliable. To the authors knowledge this is the first time in the power systems literature that the sample robustness of the clustering has been tested.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics > Centre for the Mathematics of Human Behaviour (CMOHB)
ID Code:47589
Publisher:IEEE

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation