1. Alagna F., D’Agostino N., Torchia L., Servili M.,
Rao R., Pietrella M., Giuliano G., Chiusano M.L.,
Baldoni L. & Perrotta G. (2009). Comparative 454
pyrosequencing of transcripts from two olive genotypes
during fruit development. BMC Genomics 10: 399.
DOI: http://dx.doi.org/10.1186/1471-2164-10-399
2. Bandupriya H.D.D., Gibbings J.G. & Dunwell J.M. (2013).
Isolation and characterization of an AINTEGUMENTA-like
gene in different coconut (Cocos nucifera L.) varieties from
Sri Lanka. Tree Genetics and Genomes 9(3): 813 − 827.
DOI: http://dx.doi.org/10.1007/s11295-013-0600-5
3. Bandupriya H.D.D., Gibbings J.G. & Dunwell J.M.
(2013). Overexpression of coconut AINTEGUMENTAlike
gene, CnANT, promotes in vitro regeneration in
transgenic Arabidopsis. Plant Cell Tissue and Organ Culture
116(1): 67 – 79.
DOI: http://dx.doi.org/10.1007/s11240-013-0383-2
4. Barakat A., DiLoreto D.S., Zhang Y., Smith C., Baier
K., Powell W.A, Wheeler N., Sederoff R. & Carlson J.E.
(2009). Comparison of the transcriptomes of American
chestnut (Castanea dentata) and Chinese chestnut (Castanea
mollissima) in response to the chestnut blight infection.
BMC Plant Biology 9: 51.
DOI: http://dx.doi.org/10.1186/1471-2229-9-51
5. Barnes W.M. (1994). PCR amplification of up to
35-kb DNA with high fidelity and high yield from lambda
bacteriophage templates. Proceedings of the National
Academy of Sciences of the United States of America
91(6): 2216 – 2220.
DOI: http://dx.doi.org/10.1073/pnas.91.6.2216
6. Baskin J.M., Dehnert K.W., Laughlin S.T., Amacher S.L. &
Bertozzi C.R. (2010). Visualizing enveloping layer glycans
during zebrafish early embryogenesis. Proceedings of
the National Academy of Sciences of the United States of
America 107(23): 10360 – 10365.
DOI: http://dx.doi.org/10.1073/pnas.0912081107
7. Bettencourt R., Pinheiro M., Egas C., Gomes P., Afonso
M., Shank T. & Santos R.S. (2010). High-throughput
sequencing and analysis of the gill tissue transcriptome
from the deep-sea hydrothermal vent mussel Bathymodiolus
azoricus. BMC Genomics 11: 559.
DOI: http://dx.doi.org/10.1186/1471-2164-11-559
8. Calduch-Giner J.A., Bermejo-Nogales A., Benedito-Palos
L., Estensoro I., Ballester-Lozano G., Sitjà-Bobadilla A.
& Pérez-Sánchez J. (2013). Deep sequencing for de novo
construction of a marine fish (Sparus aurata) transcriptome
database with a large coverage of protein-coding transcripts. BMC Genomics 14(9): 178.
DOI: http://dx.doi.org/10.1186/1471-2164-14-178
9. Chen S. et al. (12 authors) (2011). 454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng. Plant Cell Reports 30: 1593 – 1601. DOI: http://dx.doi.org/10.1007/s00299-011-1070-6
10. Conesa A., Gotz S., Garcia-Gomez J.M., Terol J., Talon
M. & Robles M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional
genomics research. Bioinformatics 21(18): 3674 – 3676.
DOI: http://dx.doi.org/10.1093/bioinformatics/bti610
11. Costa G.G.L. et al. (12 authors) (2010). Transcriptome
analysis of the oil-rich seed of the bioenergy crop Jatropha
curcas L. BMC Genomics 11: 462.
DOI: http://dx.doi.org/10.1186/1471-2164-11-462
12. Cvikrova M., Mala J., Hrubcova M., Eder J., Zon J. &
Machackova I. (2003). Effect of inhibition of biosynthesis
of phenylpropanoids on sessile oak somatic embryogenesis.
Plant Physiology and Biochemistry 41: 251 – 259.
13. Cvikrova M., Meravy L., Machackova I. & Eder J.
(1991). Phenylalanine ammonia-lyase, phenolic-acids and
ethylene in alfalfa (Medicago sativa L.) cell-cultures in
relation to their embryogenic ability. Plant Cell Reports
10(5): 251 – 255.
DOI: http://dx.doi.org/10.1007/BF00232569
14. De Jong A.J., Cordewener L., Lo Schiavo F., Terzi M.,
Vandekerckhove J., Vankammen A. & de Vries S.C. (1992).
A carrot somatic embryo mutant is rescuded by chitinase.
Plant Cell 4(4): 425 – 433.
DOI: http://dx.doi.org/10.1105/tpc.4.4.425
15. Dhugga K.S., Tiwari S.C. & Ray P.M. (1997). A reversibly
glycosylated polypeptide (RGP1) possibly involved in
plant cell wall synthesis: purification, gene cloning, and
trans-Golgi localization. Proceedings of the National
Academy of Sciences of the United States of America
94(14): 7679 – 7684.
DOI: http://dx.doi.org/10.1073/pnas.94.14.7679
16. Firon N. et al. (11 authors) (2013). Transcriptional profiling of sweet potato (Ipomoea batatas) roots indicates
down-regulation of lignin biosynthesis and up-regulation
of starch biosynthesis at an early stage of storage root
formation. BMC Genomics 14: 460.
DOI: http://dx.doi.org/10.1186/1471-2164-14-460
17. Ge X.M., Chen W., Song S.H., Wang W.W., Hu S.N. & Yu
J. (2008). Transcriptomic profiling of mature embryo from
an elite super-hybrid rice LYP9 and its parental lines. BMC
Plant Biology 8: 114.
DOI: http://dx.doi.org/10.1186/1471-2229-8-114
18. Hahn D.A., Ragland G.J., Shoemaker D.D. & Denlinger
D.L. (2009). Gene discovery using massively parallel
pyrosequencing to develop ESTs for the flesh fly
Sarcophaga crassipalpis. BMC Genomics 10: 234.
DOI: http://dx.doi.org/10.1186/1471-2164-10-234
19. Ho C-L. et al. (14 authors) (2007). Analysis and functional anotation of expressed sequence tags (ESTs) from multiple tissues of oil palm (Elaeis guineensis Jacq.). BMC
Genomics 8: 381.
DOI: http://dx.doi.org/10.1186/1471-2164-8-381
20. Jacobs M. & Rubery P.H. (1988). Naturally-occurring
auxin transport regulators. Science 241: 346 – 349.
DOI: http://dx.doi.org/10.1126/science.241.4863.346
21. Kyndt T., Denil S., Haegeman A., Trooskens G., Bauters
L., Van Criekinge W., De Meyer T. & Gheysen G. (2012).
Transcriptional reprogramming by root knot and migratory
nematode infection in rice. New Phytologist 196: 887 – 900.
DOI: http://dx.doi.org/10.1111/j.1469-8137.2012.04311.x
22. Kristiansson E., Asker N., Forlin L. & Larsson D.G.J.
(2009). Characterization of the Zoarces viviparus liver
transcriptome using massively parallel pyrosequencing.
BMC Genomics 10: 345.
DOI: http://dx.doi.org/10.1186/1471-2164-10-345
23. Leah R., Tommerup H., Svendsen I. & Mundy J. (1991).
Biochemical and molecular characterization of 3 barley
seed proteins with antifungal properties. Journal of
Biological Chemistry 266: 1564 – 1573.
24. Lin H.C., Morcillo F., Dussert S., Tranchant-Dubreuil C., Tregear J.W. & Tranbarger T.J. (2009). Transcriptome
analysis during somatic embryogenesis of the tropical
monocot Elaeis guineensis: evidence for conserved gene
functions in early development. Plant Molecular Biology
70(1): 173 – 192.
DOI: http://dx.doi.org/10.1007/s11103-009-9464-3
25. Lokanathan Y., Mohd-Adnan A., Wan K.L. & Nathan S.
(2010). Transcriptome analysis of the Cryptocaryon irritans
tomont stage identifies potential genes for the detection and control of cryptocaryonosis. BMC Genomics 11: 76.
DOI: http://dx.doi.org/10.1186/1471-2164-11-76
26. Low E.L., Alias H., Boon S., Shariff E.M., Tan C.A.,
Ooi L.C.L., Cheah S., Raha A., Wan K. & Singh R.
(2008). Oil palm (Elaeis guineensis Jacq.) tissue culture
ESTs: identifying genes associated with callogenesis and
embryogenesis. BMC Plant Biology 8: 62.
DOI: http://dx.doi.org/10.1186/1471-2229-8-62
27. Majewska-Sawka A. & Nothnagel E.A. (2000). The multiple
roles of arabinogalactan proteins in plant development.
Plant Physiology 122: 3 – 9.
28. Malinowski R. & Filipecki M. (2002). The role of cell wall in plant embryogenesis. Cellular and Molecular Biology
Letters 7: 1137 – 1151.
29. Mantiri F.R., Kurdyukov S., Lohar D.P., Sharopova N.,
Saeed N.A., Wang X.D., VandenBosch K.A. & Rose
R.J. (2008). The transcription factor MtSERF1 of the
ERF subfamily identified by transcriptional profiling is
required for somatic embryogenesis induced by auxin
plus cytokinin in Medicago truncatula. Plant Physiology
146(4): 1622 – 1636.
DOI: http://dx.doi.org/10.1104/pp.107.110379
30. Margulies M. et al. (56 authors) (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376 – 380.
DOI: http://dx.doi.org/10.1038/nature03959
31. Meyer E., Aglyamova G.V., Wang S., Buchanan-Carter
J., Abrego D., Colbourne J.K., Willis B. & Matz M.V.
(2009). Sequencing and de novo analysis of a coral larval
transcriptome using 454 GSFlx. BMC Genomics 10: 219.
DOI: http://dx.doi.org/10.1186/1471-2164-10-219
32. Miflin B.J. & Habash D.Z. (2002). The role of glutamine
synthetase and glutamate dehydrogenase in nitrogen
assimilation and possibilities for improvement in the
nitrogen utilization of crops. Journal of Experimental
Botany 53: 979 – 987.
DOI: http://dx.doi.org/10.1093/jexbot/53.370.979
33. Mochida K. & Shinozaki K. (2010). Genomics and
bioinformatics resources for crop improvement. Plant Cell
Physiology 51(4): 497 – 523.
DOI: http://dx.doi.org/10.1093/pcp/pcq027
34. Novaes E., Drost D.R., Farmerie W.G., Pappas
G.J., Grattapaglia D., Sederoff R.R. & Kirst M.
(2008). High-throughput gene and SNP discovery
in Eucalyptus grandis, an uncharacterized genome.
BMC Genomics 9: 312.
DOI: http://dx.doi.org/10.1186/1471-2164-9-312
35. Ogata H., Goto S., Sato K., Fujibuchi W.,
Bono H. & Kanehisa M. (1999). KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Research
27: 29 – 34.
DOI: http://dx.doi.org/10.1093/nar/27.1.29
36. Perera P.I.P., Hocher V., Verdeil J-L., Bandupriya
H.D.D., Yakandawala D.M.Y. & Weerakoon L.K. (2008).
Androgenic potential of coconut (Cocos nucifera L.). Plant
Cell Tissue and Organ Culture 92: 293 – 302.
DOI: http://dx.doi.org/10.1007/s11240-008-9337-5
37. Rensing S.A., Lang D., Schumann E., Reski R. & Hohe
A. (2005). EST sequencing from embryogenic Cyclamen
persicum cell cultures identifies a high proportion of
transcripts homologous to plant genes involved in somatic
embryogenesis. Journal of Plant Growth Regulation
24: 102 – 115.
DOI: http://dx.doi.org/10.1007/s00344-005-0033-y
38. Roberts W.K. & Selitrennikoff C.P. (1990). Zeamatin, an
antifungal protein from maize with membrane-permeabilizing
activity. Journal of General Microbiology 136: 1771 – 1778.
DOI: http://dx.doi.org/10.1099/00221287-136-9-1771
39. Schrick K., Mayer U., Martin G., Bellini C., Kuhnt C.,
Schmidt J. & Jurgens G. (2002). Interactions between
sterol biosynthesis genes in embryonic development of
Arabidopsis. The Plant Journal 31: 61 – 73.
DOI: http://dx.doi.org/10.1046/j.1365-313X.2002.01333.x
40. Sharma S.K., Millam S., Hedley P.E., McNicol J. & Bryan
G.J. (2008). Molecular regulation of somatic embryogenesis
in potato: an auxin led perspective. Plant Molecular Biology
68(1): 185 – 201.
DOI: http://dx.doi.org/10.1007/s11103-008-9360-2
41. Shin H., Hirst M., Bainbridge M.N., Magrini V., Mardis
E., Moerman D.G., Marra M.A., Baillie D.L. & Jones
S.J.M. (2008). Transcriptome analysis for Caenorhabditis
elegans based on novel expressed sequence tags. BMC
Biology 6: 30.
DOI: http://dx.doi.org/10.1186/1741-7007-6-30
42. Singh R. et al. (28 authors) (2013). Oil palm genome
sequence reveals divergence of interfertile species in old
and new worlds. Nature 500: 335 – 339.
DOI: http://dx.doi.org/10.1038/nature12309
43. Sniady V., Becker D., Herrán A., Ritter E. & Rohde W. (2003). A rapid way of physical mapping in coconut and oil palm. Available at http://www.tropentag.de/2003/abstracts/full/282.
44. Sun C., Li Y., Wu Q., Luo H., Sun Y., Song J., Lui E.M.K. & Chen S. (2010). De novo sequencing and analysis of
the American ginseng root transcriptome using a GS FLX
titanium platform to discover putative genes involved in
ginsenoside biosynthesis. BMC Genomics 11: 262.
DOI: http://dx.doi.org/10.1186/1471-2164-11-262
45. Tsukaya H., Ohshima T., Naito S., Chino M. & Komeda Y.
(1991). Sugar-dependent expression of the chs-a gene for
chalcone synthase from petunia in transgenic Arabidopsis.
Plant Physiology 97(4): 1414 − 1421.
DOI: http://dx.doi.org/10.1104/pp.97.4.1414
46. van Hengel A.J., Tadesse Z., Immerzeel P., Schols H., van Kammen A. & de Vries S.C. (2001). N-acetylglucosamine
and glucosamine-containing arabinogalactan proteins
control somatic embryogenesis. Plant Physiology
125(4): 1880 – 1890.
DOI: http://dx.doi.org/10.1104/pp.125.4.1880
47. Velazhahan R., Radhajeyalakshmi R., Thangavelu R. &
Muthukrishnan S. (2001). An antifungal protein purified
from pearl millet seeds shows sequence homology to lipid
transfer proteins. Biologia Plantarum 44: 417 – 421.
DOI: http://dx.doi.org/10.1023/A:1012463315579
48. Vega-Arreguin J.C., Ibarra-Laclette E., Jimenez-Moraila
B., Martinez O., Vielle-Calzada J.P., Herrera-Estrella L. &
Herrera-Estrella A. (2009). Deep sampling of the Palomero
maize transcriptome by a high throughput strategy of
pyrosequencing. BMC Genomics 10: 299.
DOI: http://dx.doi.org/10.1186/1471-2164-10-299
49. Vera J.C., Wheat C.W., Fescemyer H.W., Frilander
M.J., Crawford D.L., Hanski I. & Marden J.H. (2008).
Rapid transcriptome characterization for a nonmodel
organism using 454 pyrosequencing. Molecular Ecology
17: 1636 – 1647.
DOI: http://dx.doi.org/10.1111/j.1365-294X.2008.03666.x
50. Vigers A.J., Wiedemann S., Roberts W.K., Legrand M.,
Selitrennikoff C.P. & Fritig B. (1992). Thaumatin-like
pathogenesis-related proteins are antifungal. Plant Science
83: 155 – 161.
51. Wang W., Wang Y.J., Zhang Q., Qi Y. & Guo D.J. (2009).
Global characterization of Artemisia annua glandular
trichome transcriptome using 454 pyrosequencing. BMC
Genomics 10: 465.
DOI: http://dx.doi.org/10.1186/1471-2164-10-465
52. Weerakoon L.K., Vidhanaarachchi V.R.M., Fernando
S.C., Fernando A. & Gamage C.K.A. (2002). Increasing
the efficiency of embryo culture technology to promote
coconut germplasm collecting and exchange in Sri Lanka.
Coconut Embryo in vitro Culture Part II (eds. F. Engelmann,
P. Batugal & J.T. Oliver). IPGRI-APO, Serdang, Malaysia.
53. Weiss D., Vantunen A.J., Halevy A.H., Mol J.N.M. &
Gerats A.G.M. (1990). Stamens and gibberellic-acid in the
regulation of flavonoid gene-expression in the corolla of
Petunia-hybrida. Plant Physiology 94: 511 – 515.
DOI: http://dx.doi.org/10.1104/pp.94.2.511
54. Weber A.P.M., Weber K.L., Carr K., Wilkerson
C. & Ohlrogge J.B. (2007). Sampling the Arabidopsis
transcriptome with massively parallel pyrosequencing.
Plant Physiology 144: 32 – 42.
DOI: http://dx.doi.org/10.1104/pp.107.096677
55. Winkel-Shirley B. (2002). Biosynthesis of flavonoids
and effects of stress. Current Opinion in Plant Biology
5: 218 – 223.
56. Xu H., Gao Y. & Wang J. (2012). Transcriptomic analysis
of rice (Oryza sativa) developing embryos using the
RNA-Seq technique. PLoS One 7: e30646.
DOI: http://dx.doi.org/10.1371/journal.pone.0030646
57. Zeng S.H., Xiao G., Guo J., Fei Z.J., Xu Y.Q., Roe B.A.
& Wang Y. (2010). Development of a EST dataset and
characterization of EST-SSRs in a traditional Chinese
medicinal plant, Epimedium sagittatum (Sieb. Et Zucc.)
Maxim. BMC Genomics 11: 94.
DOI: http://dx.doi.org/10.1186/1471-2164-11-94
58. Zhu Y.Y., Machleder E.M., Chenchik A., Li R. & Siebert
P.D. (2001). Reverse transcriptase template switching: a
SMART approach for full length cDNA library construction.
Biotechniques 30: 892 – 897.