Bahri B, Kaltz O, Leconte M, de Vallavieille-Pope C, Enjalbert J, 2009. Tracking costs of virulence in natural populations of the wheat pathogen, Puccinia striiformis f.sp.tritici. BMC Evolutionary Biology 9, 26.
Barbara DJ, Roberts AL, Xu X-M, 2008. Virulence characteristics of apple scab (Venturia inaequalis) isolates from monoculture and mixed orchards. Plant Pathology 57, 552–561.
Becker CM, Burr TJ, Smith CA, 1992. Overwintering of conidia of Venturia inaequalis in apple buds in New York orchards. Plant Disease 76, 121–126.
Berrie A, Xu X-M, 2003. Managing apple scab (Venturia inaequalis) and powdery mildew (Podosphaera leucotricha) using AdemTM. International Journal of Pest Management 49, 243–249.
Blaise P, Gessler C, 1994. Cultivar mixtures in apple orchards as a mean to control apple scab? Norwegian Journal of Agricultural Sciences 17, 105–112.
Boehm E, Freeman S, Shabi E, Michailides T, 2003. Microsatellite primers indicate the presence of asexual populations of Venturia inaequalis in coastal Israeli apple orchards. Phytoparasitica 31, 236–251.
Bowen J, Mesarich C, Bus VGM, Beresford R, Plummer KM, Templeton M, 2011. Venturia inaequalis: the causal agent of apple scab. Molecular Plant Pathology 12, 105–122.
Bus VGM, Rikkerink EHA, Caffier V, Durel C-E, Plummer KM, 2011. Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Annual Review of Phytopathology 49, 391–413.
Calenge F, Faure A, Goerre M et al., 2004. Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94, 370–379.
Carisse O, Dewdney M, 2002. A review of non-fungicidal approaches for the control of apple scab. Phytoprotection 83, 1–29.
Didelot F, Brun L, Parisi L, 2007. Effects of cultivar mixtures on scab control in apple orchards. Plant Pathology 56, 1014–1022.
Evanno G, Regnaut S, Goudet J, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology 14, 2611–2620.
Excoffier L, Lischer HEL, 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564–567.
Excoffier L, Smouse PE, Quattro JM, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491.
Falush D, Stephens M, Pritchard JK, 2003. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587.
Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L, 2006. Venturia inaequalis resistance in apple. Critical Reviews in Plant Sciences 25, 473–503.
Gladieux P, Guérin F, Giraud T et al., 2011. Emergence of novel fungal pathogens by ecological speciation: Importance of the reduced viability of immigrants. Molecular Ecology 20, 4521–4532.
Gladieux P, Zhang X-G, Afoufa-Bastien D, Valdebenito Sanhueza R-M, Sbaghi M, Le Cam B, 2008. On the origin and spread of the scab disease of apple: out of Central Asia. PLoS ONE 3, e1455.
Guérin F, Franck P, Loiseau A, Devaux M, Le Cam B, 2004. Isolation of 21 new polymorphic microsatellite loci in the phytopathogenic fungus Venturia inaequalis. Molecular Ecology Notes 4, 268–270.
Hale ML, Burg TM, Steeves TE, 2012. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 7, e45170.
Harris SA, Robinson JP, Juniper BE, 2002. Genetic clues to the origin of the apple. Trends in Genetics 18, 426–430.
Hedrick P, 2011. Genetics of Populations. Jones & Bartlett Learning.
Holb I, Heijne B, Jeger M, 2004. Overwintering of conidia of Venturia inaequalis and the contribution to early epidemics of apple scab. Plant Disease 88, 751–757.
Holb IJ, Heijne B, Jeger MJ, 2005. The widespread occurrence of overwintered conidial inoculum of Venturia inaequalis on shoots and buds in organic and integrated apple orchards across the Netherlands. European Journal of Plant Pathology 111, 157–168.
Kamvar ZN, Tabima JF, Grünwald NJ, 2014. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281.
Koch T, Kellerhals M, Gessler C, 2000. Virulence pattern of Venturia inaequalis field isolates and corresponding differential resistance in Malus x domestica. Journal of Phytopathology 148, 357–364.
Liebhard R, Koller B, Patocchi A et al., 2003. Mapping quantitative field resistance against apple scab in a “Fiesta” x “Discovery” progeny. Phytopathology 93, 493–501.
Liu K, Muse S V, 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21, 2128–2129.
MacHardy WE, 1996. Apple Scab: Biology, Epidemiology, and Management. American Phytopathological Society.
Montarry J, Hamelin FM, Glais I, Corbi R, Andrivon D, 2010. Fitness costs associated with unnecessary virulence factors and life history traits: evolutionary insights from the potato late blight pathogen Phytophthora infestans. BMC Evolutionary Biology 10, 283.
Mundt CC, 2002. Use of multiline cultivars and cultivar mixtures for disease management. Annual Review of Phytopathology 40, 381–410.
Parisi L, Gros C, Combe F, Parveaud C-E, Gomez C, Brun L, 2013. Impact of a cultivar mixture on scab, powdery mildew and rosy aphid in an organic apple orchard. Crop Protection 43, 207–212.
Parisi L, Lespinasse Y, Guillaumes J, Krüger J, 1993. A new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene. Phytopathology 83, 533–537.
Pritchard JK, Stephens M, Donnelly P, 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
Roberts AL, Crute IR, 1994. Apple scab resistance from Malus floribunda 821 (Vf) is rendered ineffective by isolates of Venturia inaequalis from Malus floribunda. Norwegian Journal of Agricultural Sciences 17, 403–406.
Sierotzki H, Eggenschwiler M, Boillat O, McDermott JM, Gessler C, 1994. Detection of variation in virulence toward susceptible apple cultivars in natural populations of Venturia inaequalis. Phytopathology 84, 1005–1009.
Soufflet-Freslon V, Gianfranceschi L, Patocchi A, Durel C-E, 2008. Inheritance studies of apple scab resistance and identification of Rvi14, a new major gene that acts together with other broad-spectrum QTL. Genome / National Research Council Canada = Génome / Conseil national de recherches Canada 51, 657–667.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S, 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
Tenzer I, Degli Ivanissevich S, Morgante M, Gessler C, 1999. Identification of microsatellite markers and their application to population genetics of Venturia inaequalis. Phytopathology 89, 748–753.
Wolfe MS, 1985. The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annual Review of Phytopathology 23, 251–273.
Xu X, 2012. Super-races are not likely to dominate a fungal population within a life time of a perennial crop plantation of cultivar mixtures: a simulation study. BMC Ecology 12, 16.
Xu X, Harvey N, Roberts A, Barbara D, 2013. Population variation of apple scab (Venturia inaequalis) within mixed orchards in the UK. European Journal of Plant Pathology 135, 97–104.
Xu X, Roberts T, Barbara D, Harvey NG, Gao L, Sargent DJ, 2009. A genetic linkage map of Venturia inaequalis, the causal agent of apple scab. BMC Research Notes 2, 163.
Xu X, Yang J, Thakur V, Roberts A, Barbara DJ, 2008. Population variation of apple scab (Venturia inaequalis) isolates from Asia and Europe. Plant Disease 92, 247–252.