1. Zhang, Y.M. et al. Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.). Genetics 169, 2267– 2275 (2005).
2. Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38,203–208 (2006).
3. Kang, H.M. et al. Efficient control of population structure in model organism association mapping. Genetics 178, 1709–1723 (2008).
4. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824 (2012).
5. Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genet. 9, e1003264 (2013).
6. Zhang, Z. et al. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 42, 355–360 (2010).
7. Li, M. et al. Enrichment of statistical power for genome-wide association studies. BMC Biology 12, 73 (2014).
8. Yi, N. & Xu, S. Bayesian LASSO for quantitative trait loci mapping. Genetics 179, 1045–1055 (2008).
9. Hoggart, C.J., Whittaker, J.C., De Iorio, M. & Balding, D.J. Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies. PLoS Genet. 4(7), e1000130 (2008).
10. Ayers, K.L. & Cordell, H.J. SNP selection in genome-wide and candidate gene studies via penalized logistic regression. Genetic Epidemiology 34, 879–891 (2010).
11. Cho, S. et al. Joint identification of multiple genetic variants via Elastic-Net variable selection in a genome-wide association analysis. Annals of Human Genetics 74, 416–428 (2010).
12. Lü, H.-Y., Liu, X.-F., Wei, S.-P. & Zhang, Y.-M. Epistatic association mapping in homozygous crop cultivars. PLoS ONE 6, e17773 (2011).
13. Segura, V. et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat. Genet. 44, 825–830 (2012).
14. Goddard, M.E., Wray, N.R., Verbyla, K. & Visscher, P.M. Estimating effects and making predictions from genome-wide marker data. Stat. Sci. 24, 517–529 (2009).
15. Xu, S. An expectation-maximization algorithm for the Lasso estimation of quantitative trait locus effects. Heredity 105, 483–494 (2010).
16. Atwell, S. et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465, 627–631 (2010).
17. Moser, G. et al. Simultaneous discovery, estimation and prediction analysis of complex traits using a Bayesian mixture model. PLoS Genet. 11, e1004969 (2015).
18. Hartmann, U. et al. Molecular cloning of SVP: A negative regulator of the floral transition in Arabidopsis. Plant J. 21(4), 351–360 (2000).
19. Han, P., García-Ponce, B., Fonseca-Salazar, G., Alvarez-Buylla, E.R. & Yu, H. AGAMOUS-LIKE 17, a novel flowering promoter, acts in a FT-independent photoperiod pathway. Plant J. 55(2), 253–265 (2008).
20. Tominaga, R. et al. Arabidopsis CAPRICE-LIKE MYB 3 (CPL3) controls endoreduplication and flowering development in addition to trichome and root hair formation. Development 135, 1335–1345 (2008).
21. Reeves, P. & Coupland, G. Analysis of flowering time control in Arabidopsis by comparison of double and triple mutants. Plant Physiol. 126, 1085–1091 (2001).
22. Hepworth, S., Valverde, F., Ravenscroft, D., Mouradov, A. & Coupland, G. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J 21, 4327–4337 (2002).
23. Portolés, S. & Más, P. Altered oscillator function affects clock resonance and is responsible for the reduced day-length sensitivity of CKB4 overexpressing plants. Plant J. 51(6), 966–977 (2007).
24. Gu, X., Wang, Y. & He, Y. Photoperiodic regulation of flowering time through periodic histone deacetylation of the florigen gene FT. PLoS Biology 11(9), e1001649 (2013).
25. Hieke, S., Binder, H., Nieters, A. & Schumacher, M. minPtest: a resampling based gene region-level testing procedure for genetic case-control studies. Computational Statistics 29(1-2), 51–63 (2014).
26. Xu, S. Mapping quantitative trait loci by controlling polygenic background effects. Genetics 195, 1209–1222 (2013).
27. Golub, G.H. & van Loan, C.F. Matrix computations (3rd, Ed). Baltimore and London: The Johns Hopkins University Press, 1996.
28. Wang, Q., Wei, J., Pan, Y. & Xu S. An efficient empirical Bayes method for genomewide association studies. J. Anim. Breed. Genet., published online: 19 NOV 2015 doi: 10.1111/jbg.12191 (2015).