Towards expressive rule induction on IP network event streamsWrench, C., Stahl, F. ORCID: https://orcid.org/0000-0002-4860-0203, Di Fatta, G., Karthikeyan, V. and Nauck, D. (2015) Towards expressive rule induction on IP network event streams. In: AI-2015 Thirty-fifth SGAI International Conference on Artificial Intelligence, 15-17 December 2015, Cambridge.
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. Official URL: http://www.bcs-sgai.org/ai2015/ Abstract/SummaryIn order to gain insights into events and issues that may cause errors and outages in parts of IP networks, intelligent methods that capture and express causal relationships online (in real-time) are needed. Whereas generalised rule induction has been explored for non-streaming data applications, its application and adaptation on streaming data is mostly undeveloped or based on periodic and ad-hoc training with batch algorithms. Some association rule mining approaches for streaming data do exist, however, they can only express binary causal relationships. This paper presents the ongoing work on Online Generalised Rule Induction (OGRI) in order to create expressive and adaptive rule sets real-time that can be applied to a broad range of applications, including network telemetry data streams.
Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |