Identification and validation of candidate genes associated with domesticated and improved traits in soybeanZhou, L., Luo, L., Zuo, J.-F., Yang, L., Zhang, L., Guang, X., Niu, Y., Jian, J., Geng, Q.-C., Liang, L., Song, Q., Dunwell, J. M. ORCID: https://orcid.org/0000-0003-2147-665X, Wu, Z., Wen, J., Liu, Y.-Q. and Zhang, Y.-M. (2016) Identification and validation of candidate genes associated with domesticated and improved traits in soybean. The Plant Genome, 9 (2). ISSN 1940-3372
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.3835/plantgenome2015.09.0090 Abstract/SummarySoybean, an important source of vegetable oils and proteins for humans, has undergone significant phenotypic changes during domestication and improvement. However, there is limited knowledge about genes related to these domesticated and improved traits, such as flowering time, seed development, alkaline-salt tolerance, and seed oil content (SOC). In this study, more than 106,000 single nucleotide polymorphisms (SNPs) were identified by restriction site associated DNA sequencing of 14 wild, 153 landrace, and 119 bred soybean accessions, and 198 candidate domestication regions (CDRs) were identified via multiple genetic diversity analyses. Of the 1489 candidate domestication genes (CDGs) within these CDRs, a total of 330 CDGs were related to the above four traits in the domestication, gene ontology (GO) enrichment, gene expression, and pathway analyses. Eighteen, 60, 66, and 10 of the 330 CDGs were significantly associated with the above four traits, respectively. Of 134 traitassociated CDGs, 29 overlapped with previous CDGs, 11 were consistent with candidate genes in previous trait association studies, and 66 were covered by the domesticated and improved quantitative trait loci or their adjacent regions, having six common CDGs, such as one functionally characterized gene Glyma15 g17480 (GmZTL3). Of the 68 seed size (SS) and SOC CDGs, 37 were further confirmed by gene expression analysis. In addition, eight genes were found to be related to artificial selection during modern breeding. Therefore, this study provides an integrated method for efficiently identifying CDGs and valuable information for domestication and genetic research.
DownloadsDownloads per month over past year
Alejandro, S., Y. Lee, T. Tohge, D. Sudre, S. Osorio, J. Park, et al. 2012. AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr. Biol. 22:1207–1212. doi:10.1016/j.cub.2012.04.064
Almagro, A., S.H. Lin, and Y.F. Tsay. 2008. Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. Plant Cell 20:3289–3299. doi:10.1105/
tpc.107.056788
Bailey, M.A., M.A.R. Mian, T.E. Carter, D.A. Ashley, and H.R. Boerma. 1997. Pod dehiscence of soybean: Identification of quantitative trait loci. J. Hered. 88:152–154. doi:10.1093/oxfordjournals.jhered.a023075
Baird, N.A., P.D. Etter, T.S. Atwood, M.C. Currey, A.L. Shiver, Z.A. Lewis, et al. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376. doi:10.1371/journal. pone.0003376
Barecki, I.B., and B.K. Suarez. 2001. Linkage and association: Basic concepts. Adv. Genet. 42:45–66. doi:10.1016/S0065-2660(01)42014-1
Barnes, M.R., and P.S. Derwent. 2007. Needle in a haystack? Dealing with 500,000 SNP genome scans. In: M.R. Barnes, editor, Bioinformatics for geneticists. A bioinformatics primer for the analysis of genetic data. 2nd ed. John Wiley and Sons, New York. p. 447–493. doi:10.1002/9780470059180.ch18
Barrett, J.C., B. Fry, J. Maller, and M.J. Daly. 2005. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265.
doi:10.1093/bioinformatics/bth457
Baydar, N.G., and M. Akkurt. 2001. Oil content and oil quality properties of some grape seeds. Turk. J. Agric. For. 25:163–168.
Bernoux, M., T. Ve, S. Williams, C. Warren, D. Hatters, E. Valkov, et al. 2011. Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 9:200–211. doi:10.1016/j.
chom.2011.02.009
Bolon, Y.T., D.L. Hyten, J.H. Orf, C.P. Vance, and G.J. Muehlbauer. 2014. eQTL networks reveal complex genetic architecture in the immature soybean seed. Plant Gen. 7:1–14. doi:10.3835/plantgenome2013.08.0027
Boss, P.K., R.M. Bastow, J.S. Mylne, and C. Dean. 2004. Multiple pathways in the decision to flower: Enabling, promoting, and resetting. Plant Cell 16:S18–S31. doi:10.1105/tpc.015958
Broich, S., and R. Palmer. 1980. A cluster analysis of wild and domesticated soybean phenotypes. Euphytica 29:23–32. doi:10.1007/BF00037246
Bovet, L., T. Eggmann, M. Meylan-Bettex, J. Polier, P. Kammer, E. Marin, et al. 2003. Transcript levels of AtMRPs after cadmium treatment: Induction of AtMRP3. Plant Cell Environ. 26:371–381. doi:10.1046/ j.1365-3040.2003.00968.x
Bovet, L., U. Feller, and E. Martinoia. 2005. Possible involvement of plant ABC transporters in cadmium detoxification: A cDNA sub-microarray approach. Environ. Int. 31:263–267. doi:10.1016/j. envint.2004.10.011
Carpentieri-Pipolo, V., A.E. Pipolo, H. Abdel-Haleem, H.R. Boerma, and T.R. Sinclair. 2012. Identification of QTLs associated with limited leaf hydraulic conductance in soybean. Euphytica 186:679–686. doi:10.1007/s10681-011-0535-6
Carter, T.E., J.R. Nelson, C.H. Sneller, and Z. Cui. 2004. Genetic diversity in soybean. In: H.R. Boerma and J.E. Specht, editors, Soybeans: Improvement, production and uses. ASA, Madison, WI. p. 303–416.
Chen, Q.S., Z.C. Zhang, C.Y. Liu, D.W. Xin, H.M. Qiu, and D.P. Shan. 2007. QTL analysis of major agronomic traits in soybean. Agric. Sci. China 6:399–405. doi:10.1016/S1671-2927(07)60062-5
Chung, W.H., N. Jeong, J. Kim, W.K. Lee, Y.G. Lee, S.H. Lee, et al. 2014. Population structure and domestication revealed by high-depth resequencing of Korean cultivated and wild soybean genomes. DNA Res. 21:153–167. doi:10.1093/dnares/dst047
Concibido, V.C., V.B. La, P. Mclaird, N. Pineda, J. Meyer, L. Hummel, et al. 2003. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor. Appl. Genet. 106:575–
582. doi:10.1007/s00122-002-1071-5
Crocco, C.D., M. Holm, M.J. Yanovsky, and J.F. Botto. 2010. AtBBX21 and COP1 genetically interact in the regulation of shade avoidance. Plant J. 64:551–562. doi:10.1111/j.1365-313X.2010.04360.x
Datta, S., C. Hettiarachchi, H. Johansson, and M. Holm. 2007. SALT TOLERANCE HOMOLOG2, a B-box protein in Arabidopsis that activates transcription and positively regulates light-mediated development. Plant Cell 19:3242–3255. doi:10.1105/tpc.107.054791
Doebley, J.F., B.S. Gaut, and B.D. Smith. 2006. The molecular genetics of crop domestication. Cell 127:1309–1321. doi:10.1016/j.cell.2006.12.006
Dong, Y., X. Yang, J. Liu, B.H. Wang, B.L. Liu, and Y.Z. Wang. 2014. Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nat. Commun. 5:3352. doi:10.1038/ncomms4352
Ellis, J., P. Dodds, and T. Pryor. 2000. Structure, function and evolution of plant resistance genes. Curr. Opin. Plant Biol. 3:278–284. doi:10.1016/
S1369-5266(00)00080-7
Errampalli, D., D. Patton, L. Castle, L. Mickelson, K. Hansen, J. Schnall, et al. 1991. Embryonic lethals and T-DNA insertional mutagenesis in Arabidopsis. Plant Cell 3:149–157. doi:http:/ / dx. doi. org/ 10. 1105/ tpc. 3. 2. 149
Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x
Falcon, S., and R. Gentleman. 2007. Using GOstats to test gene lists for GO term association. Bioinformatics 23:257–258. doi:10.1093/bioinformatics/btl567
Falush, D., M. Stephens, and J.K. Pritchard. 2003. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164:1567–1587.
Falush, D., M. Stephens, and J.K. Pritchard. 2007. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 7:574–578. doi:10.1111/j.1471-8286.2007.01758.x
Fellenberg, C., C. Milkowski, B. Hause, P.R. Lange, C. Böttcher, J. Schmidt, et al. 2008. Tapetum-specific location of a cation-dependent O-methyltransferase
in Arabidopsis thaliana. Plant J. 56:132–145. doi:10.1111/
j.1365-313x.2008.03576.x
Funatsuki, H., M. Ishimoto, H. Tsuji, K. Kawaguchi, M. Hajika, and K. Fujino. 2006. Simple sequence repeat markers linked to a major QTL controlling pod shattering in soybean. Plant Breed. 125:195–197. doi:10.1111/j.1439-0523.2006.01199.x
Garcia, D., V. Saingery, P. Chambrier, U. Mayer, G. Jurgens, and F. Berger. 2003. Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol. 131:1661–1670. doi:10.1104/pp.102.018762
Gross, B.L., and K.M. Olsen. 2010. Genetic perspectives on crop domestication. Trends Plant Sci. 15:529–537. doi:10.1016/j.tplants.2010.05.008
Guo, J., Y. Wang, C. Song, J. Zhou, L. Qiu, H. Huang, et al. 2010. A single origin and moderate bottleneck during domestication of soybean (Glycine max): Implications from microsatellites and nucleotide sequences. Ann. Bot. 106(3):505–514. doi:10.1093/aob/mcq125
Han, Y., D. Li, D. Zhu, H. Li, X. Li, W. Teng, et al. 2012. QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor. Appl. Genet. 125:671–683. doi:10.1007/s00122-012-1859-x
Han, Y., X. Zhao, D. Liu, Y. Li, D.A. Lightfoot, Z. Yang, et al. 2015. Domestication footprints anchor genomic regions of agronomic importance in soybeans. New Phytol. doi:10.1111/nph.13626.
Hakozaki, H., J.I. Park, M. Endo, Y. Takada, T. Kazama, Y. Takeda, et al. 2008. Expression and developmental function of the 3-ketoacyl-ACP synthase2 gene in Arabidopsis thaliana. Genes Genet. Syst. 83:143–152. doi:org/10.1266/ggs.83.143
Haslekas, C., R.A. Stacy, V. Nygaard, F.A. Culiáñez-Macià, and R.B. Aalen. 1998. The expression of a peroxiredoxin antioxidant gene, AtPer1, in Arabidopsis thaliana is seed-specific and related to dormancy. Plant Mol. Biol. 36:833–845. doi:10.1023/A:1005900832440
He, Y.H., and R.M. Amasino. 2005. Role of chromatin modification in flowering-time control. Trends Plant Sci. 10:30–35. doi:10.1016/j. tplants.2004.11.003
Hepworth, S.R., F. Valverde, D. Ravenseroft, A. Mouradov, and G. Coupland. 2002. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J. 21:4327–4337. doi:10.1093/emboj/cdf432
Hoeck, J.A., W.R. Fehr, R.C. Shoemaker, G.A. Welke, S.L. Johnson, and S.R. Cianzio. 2003. Molecular marker analysis of seed size in soybean. Crop Sci. 43:68–74. doi:10.2135/cropsci2003.6800
Hu, Z., Z. Ren, and C. Lu. 2012. The phosphatidylcholine diacylglycerol cholinephosphotransferase is required for efficient hydroxy fatty acid accumulation in transgenic Arabidopsis. Plant Physiol. 158:1944–1954. doi:10.1104/pp.111.192153
Hudson, M., C. Ringli, M.T. Boylan, and P.H. Quail. 1999. The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Dev. 13:2017–2027. doi:10.1101/gad.13.15.2017
Hulbert, S.H., C.A. Webb, S.M. Smith, and Q. Sun. 2001. Resistance gene complexes: Evolution and utilization. Annu. Rev. Phytopathol. 39:285–312. doi:10.1146/annurev.phyto.39.1.285
Hyten, D.L., Q. Song, Y. Zhu, I.Y. Choi, R.L. Nelson, J.M. Costa, et al. 2006. Impacts of genetic bottlenecks on soybean genome diversity. Proc. Natl. Acad. Sci. USA 103:16,666–16,671. doi:10.1073/pnas.0604379103
Iñigo, S., M.J. Alvarez, B. Strasser, A. Califano, and P.D. Cerdán. 2012. PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. Plant J. 69:601–612. doi:10.1111/j.1365-313X.2011.04815.x
Ito, S., Y. Niwa, N. Nakamichi, H. Kawamura, T. Yamashino, and T. Mizuno. 2008. Insight into missing genetic links between two evening-expressed pseudo-response regulator genes TOC1 and PRR5 in the circadian clock-controlled circuitry in Arabidopsis thaliana. Plant Cell Physiol. 49:201–213. doi:10.1093/pcp/pcm178
Ito, S., Y.H. Song, and T. Imaizumi. 2012a. LOV domain-containing F-box proteins: Light-dependent protein degradation modules in Arabidopsis.
Mol. Plant 5:573–582. doi:10.1093/mp/sss013
Ito, S., Y.H. Song, A.R. Josephson-Day, R.J. Miller, G. Breton, R.G. Olmstead, et al. 2012b. FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis. Proc. Natl. Acad. Sci. USA 109(9):3582–3587.
doi:10.1073/pnas.1118876109
Jones, S.I., and L.O. Vodkin. 2013. Using RNA-seq to profile soybean seed development from fertilization to maturity. PLoS ONE 8:e59270.
doi:10.1371/journal.pone.0059270
Joshi, T., B. Valliyodan, J.H. Wu, S.H. Lee, D. Xu, and H.T. Nguyen. 2013. Genomic differences between cultivated soybean, G. max and its wild relative G. soja. BMC Genomics 14:S5. doi:10.1186/1471-2164-14-S1-S5
Jung, C.H., C.E. Wong, and M.B. Singh. 2012. Comparative genomic analysis of soybean flowering genes. PLoS ONE 7:e38250. doi:10.1371/journal.pone.0038250
Kang, J., J.U. Hwang, M. Lee, Y.Y. Kim, S.M. Assmann, E. Martinoia, et al. 2010. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc. Natl. Acad. Sci. USA 107:2355–2360. doi:10.1073/pnas.0909222107
Kang, S.T., M. Kwak, H.K. Kim, M. Suzuki, S. Hagihara, Y. Tanaka, et al. 2009. [Glycine max (L.) Merr.] Population-specific QTLs and their different epistatic interactions for pod dehiscence in soybean. Euphytica 166:15–24. doi:10.1007/s10681-008-9810-6
Kang, J., J. Park, H. Choi, B. Burla, T. Kretzschmar, Y. Lee, et al. 2011. Plant ABC transporters. Arabidopsis Book 9:e0153. doi:10.1199/tab.0153
Kang, B.H., J.S. Busse and S.Y. Bednarek. 2003. Members of the Arabidopsis dynamin-like gene family, ADL1, are essential for plant cytokinesis and polarized cell growth. Plant Cell 15: 899–913. doi:10.1105/tpc.009670
Keim, P., B.W. Diers, T.C. Olson, and R.C. Shoemaker. 1990. RFLP mapping in soybean: Association between marker loci and variation in quantitative traits. Genetics 126:735–742.
Kiba, T., R. Henriques, H. Sakakibara, and N.H. Chua. 2007. Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana. Plant Cell 19:2516–2530. doi:10.1105/tpc.107.053033
Kim, M.Y., S. Lee, K. Van, T.H. Kim, S.C. Jeong, I.Y. Choi, et al. 2010. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc. Natl. Acad. Sci. USA 107:22032–22037. doi:10.1073/pnas.1009526107
Kim, Y., J. Lim, M. Yeom, H. Kim, J. Kim, L. Wang, et al. 2013. ELF4 regulates GIGANTEA chromatin access through subnuclear sequestration. Cell Reports 3:671–677. doi:10.1016/j.celrep.2013.02.021
Kim, M.Y., J.H. Shin, Y.J. Kang, S.R. Shim, and S.H. Lee. 2012b. Divergence of flowering genes in soybean. J. Biosci. 37:857–870. doi:10.1007/s12038-012-9252-0
Kim, M.Y., K. Van, Y.J. Kang, K.H. Kim, and S.H. Lee. 2012a. Tracing soybean domestication history: From nucleotide to genome. Breed. Sci. 61:445–452. doi:10.1270/jsbbs.61.445
Klein, M., L. Perfus-Barbeoch, A. Frelet, N. Gaedeke, D. Reinhardt, B. Mueller-Roeber, et al. 2003. The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use. Plant J. 33:119–129. doi:10.1046/j.1365-313X.2003.016012.x
Kwon, T., J.H. Lee, S.K. Park, U.H. Hwang, J.H. Cho, D.Y. Kwak, et al. 2012. Fine mapping and identification of candidate rice genes associated with qSTV11SG, a major QTL for rice stripe disease resistance. Theor.
Appl. Genet. 125(5):1033–1046. doi:10.1007/s00122-012-1893-8
Lam, H.M., X. Xu, X. Liu, W. Chen, G. Yang, F.L. Wong, et al. 2010. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat. Genet. 42:1053–1059.
doi:10.1038/ng.715
Lee, E.K., M. Kwon, J.H. Ko, H. Yi, M.G. Hwang, S. Chang, et al. 2004. Binding of sulfonylurea by AtMRP5, an Arabidopsis multidrug resistance-related protein that functions in salt tolerance. Plant Physiol. 134:528–538. doi:10.1104/pp.103.027045
Lee, M., K. Lee, J. Lee, E.W. Noh, and Y. Lee. 2005. AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol. 138:827–836. doi:10.1104/
pp.104.058107
Lee, U., C. Wie, B.O. Fernandez, M. Feelisch, and E. Vierling. 2008. Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell
20:786–802. doi:10.1105/tpc.107.052647
Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Home, et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352
Li, D.D., T.W. Pfeiffer, and P.L. Cornelius. 2008. Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Sci. 48:571–581. doi:10.2135/cropsci2007.06.0361
Li, Y.H., S.C. Zhao, J.X. Ma, D. Li, L. Yan, J. Li, et al. 2013. Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genomics 14:579. doi:10.1186/1471-2164-14-579
Li, Y.H., G. Zhou, J. Ma, W. Jiang, L.G. Jin, Z. Zhang, et al. 2014. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 32:1045–1052. doi:10.1038/nbt.2979
Liljegren, S.J., G.S. Ditta, Y. Eshed, B. Savidge, J.L. Bowman, and M.F. Yanofsky. 2000. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770. doi:10.1038/35008089
Liu, B., T. Fujita, Z.H. Yan, S. Sakamoto, D. Xu, and J. Abe. 2007. QTL mapping of domestication-related traits in soybean (Glycine max). Ann. Bot. 100(5):1027–1038. doi:10.1093/aob/mcm149
Liu, B., A. Kanazawa, H. Matsumura, R. Takahashi, K. Harada, and J. Abe. 2008. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics 180:995–1007.
doi:10.1534/genetics.108.092742
Liu, W.X., M.Y. Kim, K. Van, Y.H. Lee, H.L. Li, X.H. Liu, et al. 2011. QTL identification of yield-related traits and their association with flowering and maturity in soybean. J. Crop Sci. Biotech. 14:65–70. doi:10.1007/s12892-010-0115-7
Liu, B., S. Watanabe, T. Uchiyama, F. Kong, A. Kanazawa, Z. Xia, et al. 2010. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol. 153:198–210. doi:10.1104/pp.109.150607
Lu, S.X., C.J. Webb, S.M. Knowles, S.H. Kim, Z. Wang, and E.M. Tobin. 2012. CCA1 and ELF3 interact in the control of hypocotyl length and flowering time in Arabidopsis. Plant Physiol. 158:1079–1088. doi:10.1104/pp.111.189670
Luo, M., E.S. Dennis, F. Berger, W.J. Peacock, and A. Chaudhury. 2005. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc. Natl. Acad. Sci. USA 102:17,531–17,536. doi:10.1073/pnas.0508418102
Martínez-Andújar, C., R.C. Martin, and H. Nonogaki. 2012. Seed traits and genes important for translational biology—Highlights from recent discoveries. Plant Cell Physiol. 53:5–15. doi:10.1093/pcp/pcr112
McCarthy, F.M., N. Wang, G.B. Magee, B. Nanduri, M.L. Lawrence, E.B. Camon, et al. 2006. AgBase: A functional genomics resource for agriculture. BMC Genomics 7:229. doi:10.1186/1471-2164-7-229
Meinke, D., R. Muralla, C. Sweeney, and A. Dickerman. 2008. Identifying essential genes in Arabidopsis thaliana. Trends Plant Sci.13:483–491. doi:10.1016/j.tplants.2008.06.003
Michaels, S.D., and R.M. Amasino. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956. doi:10.1105/tpc.11.5.949
Moche, M., K. Dehesh, P. Edwards, and Y. Lindqvist. 2001. The crystal structure of β-ketoacyl-acyl carrier protein synthase II from Synechocystis
sp. at 1.54 Å resolution and its relationship to other condensing enzymes. J. Mol. Biol. 305:491–503. doi:10.1006/jmbi.2000.4272
Mochida, K., T. Yoshida, T. Sakurai, K. Yamaguchi-Shinozaki, K. Shinozaki, and L.S. Tran. 2010. Genome-wide analysis of two-component systems and prediction of stress-responsive two-component system members in soybean. DNA Res. 17:303–324. doi:10.1093/dnares/dsq021
Okushima, Y., I. Mitina, H.L. Quach, and A. Theologis. 2005. AUXIN RESPONSE FACTOR 2 (ARF2): A pleiotropic developmental regulator. Plant J. 43:29–46. doi:10.1111/j.1365-313X.2005.02426.x
Olsen, K.M., and J.F. Wendel. 2013. Crop plants as models for understanding plant adaptation and diversification. Front. Plant Sci. 4:290. doi:10.3389/fpls.2013.00290
Pagnussat, G.C., H.J. Yu, Q.A. Ngo, S. Rajani, S. Mayalagu, C.S. Johnson, et al. 2005. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development
132:603–614. doi:10.1242/dev.01595
Patterson, N., A.L. Price, and D. Reich. 2006. Population structure and eigenanalysis. PLoS Genet. 2:e190. doi:10.1371/journal.pgen.0020190
Pedersen, P. 2009. Soybean growth and development. Extension Publ. PM1945. Iowa State Univ., Ames.
Penfield, S., R.C. Meissner, D.A. Shoue, N.C. Carpita, and M.W. Bevan. 2001. MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat. Plant Cell 13:2777–2791. doi:10.1105/tpc.010265
Pinyopich, A., G.S. Ditta, B. Savidge, S.J. Liljegren, E. Baumann, E. Wisman, et al. 2003. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88. doi:10.1038/nature01741
Pritchard, J.K., M. Stephens, and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945–959.
Putterill, J., R. Laurie, and R. Macknight. 2004. It’s time to flower: The genetic control of flowering time. BioEssays 26:363–373. doi:10.1002/bies.20021
Putterill, J., F. Robson, K. Lee, R. Simon, and G. Coupland. 1995. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857. doi:10.1016/0092-8674(95)90288-0
Ramonell, K., M. Berrocal-Lobo, S. Koh, J. Wan, H. Edwards, G. Stacey, et al. 2005. Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen Erysiphe cichoracearum. Plant Physiol. 138:1027–1036. doi:10.1104/pp.105.060947
Retief, J.D. 2000. Phylogenetic analysis using PHYLIP. Methods Mol. Biol. 132:243–258.
Saitou, N., and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425.
Salas, P., J.C. Oyarzo-Llaipen, D. Wang, K. Chase, and L. Mansur. 2006. Genetic mapping of seed shape in three populations of recombinant inbred lines of soybean (Glycine max L. Merr.). Theor. Appl. Genet.
113:1459–1466. doi:10.1007/s00122-006-0392-1
Saracco, S.A., M.J. Miller, J. Kurepa, and R.D. Vierstra. 2007. Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant Physiol. 145:119–134.
doi:10.1104/pp.107.102285
Schmutz, J., S.B. Cannon, J. Schlueter, J. Ma, T. Mitros, W. Nelson, et al. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463:178–183. doi:10.1038/nature08670
Schnurr, J.A., J.M. Shockey, G.J. de Boer, and J.A. Browse. 2002. Fatty acid export from the chloroplast. Molecular characterization of a major plastidial acyl-coenzyme A synthetase from Arabidopsis. Plant Physiol. 129:1700–1709. doi:10.1104/pp.003251
Sibout, R., and H. Höfte. 2012. Plant cell biology: The ABC of monolignol transport. Curr. Biol. 22:R533–R535. doi:10.1016/j.cub.2012.05.005
Sobhanian, H., R. Razavizadeh, Y. Nanjo, A.A. Ehsanpour, F.R. Jazii, N. Motamed, et al. 2010. Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci. 8:19. doi:10.1186/1477-5956-8-19
Somers, D.E., W.Y. Kim, and R. Geng. 2004. The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. Plant Cell 16:769–782. doi:10.1105/tpc.016808
Song, Q., D.L. Hyten, G.F. Jia, C.V. Quigley, E.W. Fickus, R.L. Nelson, et al. 2013. Development and evaluation of soySNP50k, a high-density genotyping array for soybean. PLoS ONE 8:E54985. doi:10.1371/journal. pone.0054985
Song, Y.H., R.W. Smith, B.J. To, A.J. Millar, and T. Imaizumi. 2012. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science 336:1045–1049. doi:10.1126/science.1219644
Sugano, S., C. Andronis, R.M. Green, Z.Y. Wang, and E.M. Tobin. 1998. Protein kinase CK2 interacts with and phosphorylates the Arabidopsis circadian clock-associated 1 protein. Proc. Natl. Acad. Sci. USA 95:11,020–11,025. doi:10.1073/pnas.95.18.11020
Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595.
Tajuddin, T., S. Watanabe, N. Yamanaka, and K. Harada. 2003. Analysis of quantitative trait loci for protein and lipid contents in soybean seeds using recombinant inbred lines. Breed. Sci. 53:133–140. doi:10.1270/jsbbs.53.133
Tang, H., U. Sezen, and A.H. Paterson. 2010. Domestication and plant genome. Curr. Opin. Plant Biol. 13:160–166. doi:10.1016/j.pbi.2009.10.008
Tian, Z., X. Wang, R. Lee, Y. Li, J.E. Specht, R.L. Nelson, et al. 2010. Artificial selection for determinate growth habit in soybean. Proc. Natl. Acad. Sci. USA 107:8563–8568. doi:10.1073/pnas.1000088107
Trapnell, C., L. Pachter, and S.L. Salzberg. 2009. TopHat: Discovering splice junctions with RNA-seq. Bioinformatics 25:1105–1111. doi:10.1093/bioinformatics/btp120
Tzafrir, I., A. Dickerman, O. Brazhnik, Q. Nguyen, J. McElver, C. Frye, et al. 2003. The Arabidopsis seed genes project. Nucleic Acids Res. 31:90–93. doi:10.1093/nar/gkg028
Van, K., M.Y. Kim, J.H. Shin, K.D. Kim, Y.H. Lee, and S.H. Lee. 2014. Molecular evidence for soybean domestication. In: R. Tuberosa, A. Graner, and E. Frison, editors, Genomics of plant genetic resources. Vol. 1, Managing, sequencing and mining genetic resources. p. 465–481.
van der Biezen, E.A., and J.D.G. Jones. 1998. The NB-ARC domain: A novel signaling motif shared by plant resistance gene products and regulators of cell death in animals. Curr. Biol. 8:R226–R227. doi:10.1016/S0960-9822(98)70145-9
Varshney, R.K., C. Song, R.K. Saxena, S. Azam, S. Yu, A.G. Sharpe, et al. 2013. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 31:240–246.
doi:10.1038/nbt.2491
Wang, L.K., Z.X. Feng, X. Wang, X. Wang, and X. Zhang. 2010. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138. doi:10.1093/bioinformatics/btp612
Watanabe, S., R. Hideshima, Z. Xia, Y. Tsubokura, S. Sato, Y. Nakamoto, et al. 2009. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182:1251–1262. doi:10.1534/genetics. 108.098772
Watanabe, S., Z. Xia, R. Hideshima, Y. Tsubokura, S. Sato, N. Yamanaka, et al. 2011. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188:395–407. doi:10.1534/genetics.
110.125062
Xi, J., P. Xu, and C.B. Xiang. 2012. Loss of AtPDR11, a plasma membranelocalized ABC transporter, confers paraquat tolerance in Arabidopsis thaliana. Plant J. 69:782–791. doi:10.1111/j.1365-313X.2011.04830.x
Xia, Z., S. Watanabe, T. Yamada, Y. Tsubokura, H. Nakashima, H. Zhai, et al. 2012. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic
flowering. Proc. Natl. Acad. Sci. USA 109:2155–2164. doi:10.1073/pnas.1117982109
Xu, Y. 2010. Molecular plant breeding. CABI, Wallingford, UK.
Xu, X., X. Liu, S. Ge, J.D. Jensen, F. Hu, X. Li, et al. 2012. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat. Biotechnol. 30:105–111. doi:10.1038/nbt.2050
Xu, L., Z. Zhao, A. Dong, L. Soubigou-Taconnat, J.P. Renou, A. Steinmetz, et al. 2008. Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time
regulation and other processes in Arabidopsis thaliana. Mol. Cell. Biol. 28:1348–1360. doi:10.1128/MCB.01607-07
Xue, Z.G., X.M. Zhang, C.F. Lei, X.J. Chen, and Y.F. Fu. 2012. Molecular cloning and functional analysis of one ZEITLUPE homolog GmZTL3 in soybean. Mol. Biol. Rep. 39:1411–1418. doi:10.1007/s11033-011-0875-2
Yanovsky, M.J., and S.A. Kay. 2002. Molecular basis of seasonal time measurement in Arabidopsis. Nature 419:308–312. doi:10.1038/nature00996
Zhang, D., H. Cheng, H. Wang, H. Zhang, C. Liu, and D. Yu. 2010. Identification of genomic regions determining flower and pod numbers development in soybean (Glycine max L). J. Genet. Genom. 37:545–556. doi:10.1016/S1673-8527(09)60074-6
Zhang, J.Y., M.H.C. de Carvalho, I. Torres-Jerez, Y. Kang, S.N. Allen, D.V. Huhman, et al. 2014. Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering. Plant Cell Environ. 37:2553–2576. doi:10.1111/pce.12328
Zhao, S., F. Zheng, W. He, H. Wu, S. Pan, and H.M. Lam. 2015. Impacts of nucleotide fixation during soybean domestication and improvement. BMC Plant Biol. 15:81. doi:10.1186/s12870-015-0463-z
Zhou, Z., Y. Jiang, Z. Wang, Z.H. Gou, J. Lyu, W.Y. Li, et al. 2015a. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 33:408–414. doi:10.1038/nbt.3096
Zhou, L., S.B. Wang, J. Jian, Q.C. Geng, J. Wen, Q.J. Song, et al. 2015b. Identification of domestication-related loci associated with flowering time and seed size in soybean with the RAD-seq genotyping method. Sci. Rep. 5:9350. doi:10.1038/srep09350
Zientara, K., A. Wawrzyńska, J. Lukomska, J.R. López-Moya, F. Liszewska, A.G. Assunção, et al. 2009. Activity of the AtMRP3 promoter in transgenic Arabidopsis thaliana and Nicotiana tabacum plants is increased by cadmium, nickel, arsenic, cobalt and lead but not by zinc and iron. J. Biotechnol. 139:258–263. doi:10.1016/j.jbiotec.2008.12.001 University Staff: Request a correction | Centaur Editors: Update this record |