Sparse density estimation on multinomial manifold combining local component analysisHong, X. ORCID: https://orcid.org/0000-0002-6832-2298 and Gao, J. (2015) Sparse density estimation on multinomial manifold combining local component analysis. In: 2015 International Joint Conference on Neural Networks (IJCNN), 12-17, July, 2015, Killarney, Ireland. Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. Official URL: http://dx.doi.org/10.1109/IJCNN.2015.7280301 Abstract/SummaryA new sparse kernel density estimator is introduced based on the minimum integrated square error criterion combining local component analysis for the finite mixture model. We start with a Parzen window estimator which has the Gaussian kernels with a common covariance matrix, the local component analysis is initially applied to find the covariance matrix using expectation maximization algorithm. Since the constraint on the mixing coefficients of a finite mixture model is on the multinomial manifold, we then use the well-known Riemannian trust-region algorithm to find the set of sparse mixing coefficients. The first and second order Riemannian geometry of the multinomial manifold are utilized in the Riemannian trust-region algorithm. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with competitive accuracy to existing kernel density estimators.
Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |