An integrated bioinformatics analysis reveals divergent evolutionary pattern of oil biosynthesis in high- and low-oil plantsZhang, L., Wang, S. B., Li, Q. G., Song, J., Hao, Y. Q., Zhou, L., Zheng, H. Q., Dunwell, J. ORCID: https://orcid.org/0000-0003-2147-665X and Zhang, Y. M. (2016) An integrated bioinformatics analysis reveals divergent evolutionary pattern of oil biosynthesis in high- and low-oil plants. PLoS ONE, 11 (5). e0154882. ISSN 1932-6203
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1371/journal.pone.0154882 Abstract/SummarySeed oils provide a renewable source of food, biofuel and industrial raw materials that is important for humans. Although many genes and pathways for acyl-lipid metabolism have been identified, little is known about whether there is a specific mechanism for high-oil content in high-oil plants. Based on the distinct differences in seed oil content between four high-oil dicots (20~50%) and three low-oil grasses (<3%), comparative genome, transcriptome and differential expression analyses were used to investigate this mechanism. Among 4,051 dicot-specific soybean genes identified from 252,443 genes in the seven species, 54 genes were shown to directly participate in acyl-lipid metabolism, and 93 genes were found to be associated with acyl-lipid metabolism. Among the 93 dicot-specific genes, 42 and 27 genes, including CBM20-like SBDs and GPT2, participate in carbohydrate degradation and transport, respectively. 40 genes highly up-regulated during seed oil rapid accumulation period are mainly involved in initial fatty acid synthesis, triacylglyceride assembly and oil-body formation, for example, ACCase, PP, DGAT1, PDAT1, OLEs and STEROs, which were also found to be differentially expressed between high- and low-oil soybean accessions. Phylogenetic analysis revealed distinct differences of oleosin in patterns of gene duplication and loss between high-oil dicots and low-oil grasses. In addition, seed-specific GmGRF5, ABI5 and GmTZF4 were predicted to be candidate regulators in seed oil accumulation. This study facilitates future research on lipid biosynthesis and potential genetic improvement of seed oil content.
DownloadsDownloads per month over past year
1. Scotland RW, Wortley AH. How many species of seed plants are there? Taxon. 2003;52(1):101. doi: 10.2307/3647306
2. Raven P, Johnson G, Mason K, Losos J, Singer S. Biology: McGraw-Hill Education, 2010.
3. Bao X, Focke M, Pollard M, Ohlrogge J. Understanding in vivo carbon precursor supply for fatty acid synthesis in leaf tissue. Plant J. 2000;22(1):39–50. pmid:10792819 doi: 10.1046/j.1365-313x.2000.00712.x
4. Rawsthorne S. Carbon flux and fatty acid synthesis in plants. Prog Lipid Res. 2002;41(2):182–96. pmid:11755683 doi: 10.1016/s0163-7827(01)00023-6
5. Li Y, Han D, Hu G, Sommerfeld M, Hu Q. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioengineer. 2010;107(2):258–68. doi: 10.1002/bit.22807
6. Weselake RJ, Taylor DC, Rahman MH, Shah S, Laroche A, McVetty PB et al. Increasing the flow of carbon into seed oil. Biotechnol Adv. 2009;27(6):866–78. doi: 10.1016/j.biotechadv.2009.07.001. pmid:19625012
7. Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD et al. Acyl-lipid metabolism. The Arabidopsis book / American Society of Plant Biologists. 2013;11:e0161. doi: 10.1199/tab.0161. pmid:23505340
8. Beisson F, Koo AJ, Ruuska S, Schwender J, Pollard M, Thelen JJ et al. Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol. 2003;132(2):681–97. pmid:12805597 doi: 10.1104/pp.103.022988
9. Klaus D, Ohlrogge JB, Neuhaus HE, Dormann P. Increased fatty acid production in potato by engineering of acetyl-CoA carboxylase. Planta. 2004;219(3):389–96. pmid:15014998 doi: 10.1007/s00425-004-1236-3
10. Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J. Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol. 1997;113(1):75–81. pmid:9008389 doi: 10.1104/pp.113.1.75
11. Davis MS, Solbiati J, Cronan JE Jr. Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem. 2000;275(37):28593–8. pmid:10893421 doi: 10.1074/jbc.m004756200
12. Vigeolas H, Waldeck P, Zank T, Geigenberger P. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol J. 2007;5(3):431–41. pmid:17430545 doi: 10.1111/j.1467-7652.2007.00252.x
13. Jain RK, Coffey M, Lai K, Kumar A, MacKenzie SL. Enhancement of seed oil content by expression of glycerol-3-phosphate acyItransferase genes. Biochem Soc Trans. 2000;28:958–61. pmid:11171271 doi: 10.1042/0300-5127:0280958
14. Maisonneuve S, Bessoule JJ, Lessire R, Delseny M, Roscoe TJ. Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiol. 2010;152(2):670–84. doi: 10.1104/pp.109.148247. pmid:19965969
15. Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM et al. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol. 2001;126(2):861–74. pmid:11402213 doi: 10.1104/pp.126.2.861
16. Kim H, Kim HU, Suh MC. Efficiency for increasing seed oil content using WRINKLED1 and DGAT1 under the control of two seed-specific promoters, FAE1 and Napin. J Plant Biotechnol. 2012;39(4):242–52. doi: 10.5010/jpb.2012.39.4.242
17. Lardizabal K, Effertz R, Levering C, Mai J, Pedroso MC, Jury T et al. Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean. Plant Physiol. 2008;148(1):89–96. doi: 10.1104/pp.108.123042. pmid:18633120
18. Weselake RJ, Shah S, Tang M, Quant PA, Snyder CL, Furukawa-Stoffer TL et al. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. J Exp Bot. 2008;59(13):3543–9. doi: 10.1093/jxb/ern206. pmid:18703491
19. Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J et al. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet. 2008;40(3):367–72. doi: 10.1038/ng.85. pmid:18278045
20. Baud S, Wuilleme S, To A, Rochat C, Lepiniec L. Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J. 2009;60(6):933–47. doi: 10.1111/j.1365-313X.2009.04011.x. pmid:19719479
21. Mu JY, Tan HL, Zheng Q, Fu FY, Liang Y, Zhang JA et al. LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol. 2008;148(2):1042–54. doi: 10.1104/pp.108.126342. pmid:18689444
22. Tan H, Yang X, Zhang F, Zheng X, Qu C, Mu J et al. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol. 2011;156(3):1577–88. doi: 10.1104/pp.111.175000. pmid:21562329
23. Baud S, Mendoza MS, To A, Harscoet E, Lepiniec L, Dubreucq B. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J. 2007;50(5):825–38. pmid:17419836 doi: 10.1111/j.1365-313x.2007.03092.x
24. Wang H, Guo J, Lambert KN, Lin Y. Developmental control of Arabidopsis seed oil biosynthesis. Planta. 2007;226(3):773–83. pmid:17522888 doi: 10.1007/s00425-007-0524-0
25. Song QX, Li QT, Liu YF, Zhang FX, Ma B, Zhang WK et al. Soybean GmbZIP123 gene enhances lipid content in the seeds of transgenic Arabidopsis plants. J Exp Bot. 2013; 64(14): 4329–41. doi: 10.1093/jxb/ert238. pmid:23963672
26. Liu YF, Li QT, Lu X, Song QX, Lam SM, Zhang WK et al. Soybean GmMYB73 promotes lipid accumulation in transgenic plants. BMC Plant Biol. 2014;14:73. doi: 10.1186/1471-2229-14-73. pmid:24655684
27. Crowe AJ, Abenes M, Plant A, Moloney MM. The seed-specific transactivator, ABI3, induces oleosin gene expression. Plant Sci. 2000;151(2):171–81. pmid:10808073 doi: 10.1016/s0168-9452(99)00214-9
28. Monke G, Seifert M, Keilwagen J, Mohr M, Grosse I, Hahnel U et al. Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Res. 2012;40(17):8240–54. pmid:22730287 doi: 10.1093/nar/gks594
29. Smooker AM, Wells R, Morgan C, Beaudoin F, Cho K, Fraser F et al. The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus. Theor Appl Genet. 2011;122(6):1075–90. doi: 10.1007/s00122-010-1512-5. pmid:21184048
30. Ying JZ, Shan JX, Gao JP, Zhu MZ, Shi M, Lin HX. Identification of quantitative trait loci for lipid metabolism in rice seeds. Mol Plant. 2012;5(4):865–75. doi: 10.1093/mp/ssr100. pmid:22147755
31. Schwender J, Hay JO. Predictive modeling of biomass component tradeoffs in Brassica napus developing oilseeds based on in silico manipulation of storage metabolism. Plant Physiol. 2012;160(3):1218–36. doi: 10.1104/pp.112.203927. pmid:22984123
32. van Erp H, Kelly AA, Menard G, Eastmond PJ. Multigene engineering of triacylglycerol metabolism boosts seed oil content in Arabidopsis. Plant Physiol. 2014;165(1):30–6. doi: 10.1104/pp.114.236430. pmid:24696520
33. Andre C, Froehlich JE, Moll MR, Benning C. A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. Plant Cell. 2007;19(6):2006–22. pmid:17557808 doi: 10.1105/tpc.106.048629
34. Andriotis VM, Kruger NJ, Pike MJ, Smith AM. Plastidial glycolysis in developing Arabidopsis embryos. The New Phytologist. 2010;185(3):649–62. doi: 10.1111/j.1469-8137.2009.03113.x. pmid:20002588
35. Allen DK, Young JD. Carbon and nitrogen provisions alter the metabolic flux in developing soybean embryos. Plant Physiol. 2013;161(3):1458–75. doi: 10.1104/pp.112.203299. pmid:23314943
36. Wakao S, Andre C, Benning C. Functional analyses of cytosolic glucose-6-phosphate dehydrogenases and their contribution to seed oil accumulation in Arabidopsis. Plant Physiol. 2008;146(1):277–88. pmid:17993547 doi: 10.1104/pp.107.108423
37. Sanjaya , Durrett TP, Weise SE, Benning C. Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis. Plant Biotechnol J. 2011;9(8):874–83. pmid:22003502 doi: 10.1111/j.1467-7652.2011.00599.x
38. Meyer K, Stecca KL, Ewell-Hicks K, Allen SM, Everard JD. Oil and protein accumulation in developing seeds is influenced by the expression of a cytosolic pyrophosphatase in Arabidopsis. Plant Physiol. 2012;159(3):1221–34. doi: 10.1104/pp.112.198309. pmid:22566496
39. Pedersen P, Elbert B. Soybean growth and development. Iowa State University, University Extension Ames, IA; 2004.
40. Li L, Stoeckert CJ Jr., Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13(9):2178–89. pmid:12952885 doi: 10.1101/gr.1224503
41. Jones SI, Vodkin LO. Using RNA-Seq to profile soybean seed development from fertilization to maturity. PLoS ONE. 2013;8(3):e59270. doi: 10.1371/journal.pone.0059270. pmid:23555009
42. Theocharidis A, van Dongen S, Enright AJ, Freeman TC. Network visualization and analysis of gene expression data using BioLayout Express(3D). Nature Protocols. 2009;4(10):1535–50. doi: 10.1038/nprot.2009.177. pmid:19798086
43. Wei H, Persson S, Mehta T, Srinivasasainagendra V, Chen L, Page GP et al. Transcriptional coordination of the metabolic network in Arabidopsis. Plant Physiol. 2006;142(2):762–74. pmid:16920875 doi: 10.1104/pp.106.080358
44. Mochida K, Uehara-Yamaguchi Y, Yoshida T, Sakurai T, Shinozaki K. Global landscape of a co-expressed gene network in barley and its application to gene discovery in Triticeae crops. Plant Cell Physiol. 2011;52(5):785–803. doi: 10.1093/pcp/pcr035. pmid:21441235
45. Guo K, Zou W, Feng Y, Zhang M, Zhang J, Tu F et al. An integrated genomic and metabolomic framework for cell wall biology in rice. BMC Genomics. 2014;15:596. doi: 10.1186/1471-2164-15-596. pmid:25023612
46. Fu FF, Xue HW. Coexpression analysis identifies Rice Starch Regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiol. 2010;154(2):927–38. doi: 10.1104/pp.110.159517. pmid:20713616
47. Baud S, Lepiniec L. Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis. Plant Physiol Biochem. 2009;47(6):448–55. doi: 10.1016/j.plaphy.2008.12.006. pmid:19136270
48. Banas W, Sanchez Garcia A, Banas A, Stymne S. Activities of acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT) in microsomal preparations of developing sunflower and safflower seeds. Planta. 2013;237(6):1627–36. doi: 10.1007/s00425-013-1870-8. pmid:23539042
49. Kim HU, Hsieh K, Ratnayake C, Huang AH. A novel group of oleosins is present inside the pollen of Arabidopsis. J Biol Chem. 2002;277(25):22677–84. pmid:11929861 doi: 10.1074/jbc.m109298200
50. Liu WX, Liu HL, Qu le Q. Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds. Theor Appl Genet. 2013;126(9):2289–97. doi: 10.1007/s00122-013-2135-4. pmid:23748707
51. Miquel M, Trigui G, d'Andrea S, Kelemen Z, Baud S, Berger A et al. Specialization of oleosins in oil body dynamics during seed development in Arabidopsis seeds. Plant Physiol. 2014;164(4):1866–78. doi: 10.1104/pp.113.233262. pmid:24515832
52. Wang HW, Zhang B, Hao YJ, Huang J, Tian AG, Liao Y et al. The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant J. 2007;52(4):716–29. pmid:17877700 doi: 10.1111/j.1365-313x.2007.03268.x
53. Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H et al. An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J. 2009;60(3):476–87. doi: 10.1111/j.1365-313X.2009.03967.x. pmid:19594710
54. Jin J, Zhang H, Kong L, Gao G, Luo J. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res. 2014;42:D1182–7. doi: 10.1093/nar/gkt1016. pmid:24174544
55. Jessen D, Roth C, Wiermer M, Fulda M. Two activities of long-chain acyl-coenzyme A synthetase are involved in lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis. Plant Physiol. 2015;167(2):351–66. doi: 10.1104/pp.114.250365. pmid:25540329
56. Zhao L, Katavic V, Li F, Haughn GW, Kunst L. Insertional mutant analysis reveals that long-chain acyl-CoA synthetase 1 (LACS1), but not LACS8, functionally overlaps with LACS9 in Arabidopsis seed oil biosynthesis. Plant J. 2010;64(6):1048–58. doi: 10.1111/j.1365-313X.2010.04396.x. pmid:21143684
57. Wu XL, Liu ZH, Hu ZH, Huang RZ. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. J Integr Plant Biol. 2014;56(6):582–93. doi: 10.1111/jipb.12158. pmid:24393360
58. Ma W, Kong Q, Arondel V, Kilaru A, Bates PD, Thrower NA et al. Wrinkled1, a ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp. PLoS ONE. 2013;8(7):e68887. doi: 10.1371/journal.pone.0068887. pmid:23922666
59. Dussert S, Guerin C, Andersson M, Joet T, Tranbarger TJ, Pizot M et al. Comparative transcriptome analysis of three oil Palm fruit and seed tissues that differ in oil content and fatty acid composition. Plant Physiol. 2013;162(3):1337–58. doi: 10.1104/pp.113.220525. pmid:23735505
60. Shen B, Allen WB, Zheng P, Li C, Glassman K, Ranch J et al. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol. 2010;153(3):980–7. doi: 10.1104/pp.110.157537. pmid:20488892
61. Sreenivasulu N, Wobus U. Seed-development programs: a systems biology-based comparison between dicots and monocots. Ann Rev Plant Biol. 2013;64:189–217. doi: 10.1146/annurev-arplant-050312-120215
62. Yamamoto A, Kagaya Y, Usui H, Hobo T, Takeda S, Hattori T. Diverse roles and mechanisms of gene regulation by the Arabidopsis seed maturation master regulator FUS3 revealed by microarray analysis. Plant Cell Physiol. 2010;51(12):2031–46. doi: 10.1093/pcp/pcq162. pmid:21045071
63. Pouvreau B, Baud S, Vernoud V, Morin V, Py C, Gendrot G et al. Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis. Plant Physiol. 2011;156(2):674–86. doi: 10.1104/pp.111.173641. pmid:21474435
64. Wang L, Yu S, Tong C, Zhao Y, Liu Y, Song C et al. Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol. 2014;15(2):R39. doi: 10.1186/gb-2014-15-2-r39. pmid:24576357
65. Mhaske V, Beldjilali K, Ohlrogge J, Pollard M. Isolation and characterization of an Arabidopsis thaliana knockout line for phospholipid: diacylglycerol transacylase gene (At5g13640). Plant Physiol Biochem. 2005;43(4):413–7. pmid:15907694 doi: 10.1016/j.plaphy.2005.01.013
66. van Erp H, Bates PD, Burgal J, Shockey J, Browse J. Castor phospholipid:diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis. Plant Physiol. 2011;155(2):683–93. doi: 10.1104/pp.110.167239. pmid:21173026
67. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY et al. CDD: NCBI's conserved domain database. Nucleic Acids Res. 2015;43:D222–6. doi: 10.1093/nar/gku1221. pmid:25414356
68. Christiansen C, Abou Hachem M, Janecek S, Vikso-Nielsen A, Blennow A, Svensson B. The carbohydrate-binding module family 20—diversity, structure, and function. The FEBS Journal. 2009; 276(18):5006–29. doi: 10.1111/j.1742-4658.2009.07221.x. pmid:19682075
69. Rodriguez-Sanoja R, Oviedo N, Sanchez S. Microbial starch-binding domain. Curr Opinion Microbiol. 2005;8(3):260–7. doi: 10.1016/j.mib.2005.04.013
70. Southall SM, Simpson PJ, Gilbert HJ, Williamson G, Williamson MP. The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS Letters. 1999;447(1):58–60. pmid:10218582 doi: 10.1016/s0014-5793(99)00263-x
71. Kammerer B, Fischer K, Hilpert B, Schubert S, Gutensohn M, Weber A et al. Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate/phosphate antiporter. Plant Cell. 1998;10(1):105–17. pmid:9477574 doi: 10.2307/3870632
72. Fischer K. The import and export business in plastids: transport processes across the inner envelope membrane. Plant Physiol. 2011;155(4):1511–9. doi: 10.1104/pp.110.170241. pmid:21263040
73. Andriotis VME, Pike MJ, Bunnewell S, Hills MJ, Smith AM. The plastidial glucose-6-phosphate/ phosphate antiporter GPT1 is essential for morphogenesis in Arabidopsis embryos. Plant J. 2010; 64(1): 128–39. doi: 10.1111/j.1365-313X.2010.04313.x. pmid:20659277
74. Niewiadomski P, Knappe S, Geimer S, Fischer K, Schulz B, Unte US et al. The Arabidopsis plastidic glucose 6-phosphate/phosphate translocator GPT1 is essential for pollen maturation and embryo sac development. Plant Cell. 2005;17(3):760–75. pmid:15722468 doi: 10.1105/tpc.104.029124
75. Kunz HH, Hausler RE, Fettke J, Herbst K, Niewiadomski P, Gierth M et al. The role of plastidial glucose-6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis. Plant Biol. 2010;12 Suppl 1:115–28. doi: 10.1111/j.1438-8677.2010.00349.x. pmid:20712627
76. Dyson BC, Allwood JW, Feil R, Xu Y, Miller M, Bowsher CG et al. Acclimation of metabolism to light in Arabidopsis thaliana: the glucose 6-phosphate/phosphate translocator GPT2 directs metabolic acclimation. Plant Cell Environ. 2015;38(7):1404–17. doi: 10.1111/pce.12495. pmid:25474495
77. Bourgis F, Kilaru A, Cao X, Ngando-Ebongue GF, Drira N, Ohlrogge JB et al. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc Natl Acad Sci U S A. 2011;108(30):12527–32. doi: 10.1073/pnas.1106502108. pmid:21709233
78. Ohlrogge JB, Jaworski JG. Regulation of Fatty Acid Synthesis. Annual Review of Plant Physiology and Plant Mol Biol. 1997;48:109–36. doi: 10.1146/annurev.arplant.48.1.109
79. Konishi T, Shinohara K, Yamada K, Sasak Y. Acetyl-CoA carboxylase in higher plants: most plants other than Gramineae have both the prokaryotic and the eukaryotic forms of this enzyme. Plant Cell Physiol. 1996;37(2):117–22. pmid:8665091 doi: 10.1093/oxfordjournals.pcp.a028920
80. Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J. 2004;40(4):575–85. pmid:15500472 doi: 10.1111/j.1365-313x.2004.02235.x
81. Girke T, Todd J, Ruuska S, White J, Benning C, Ohlrogge J. Microarray analysis of developing Arabidopsis seeds. Plant Physiol. 2000;124(4):1570–81. pmid:11115875 doi: 10.1104/pp.124.4.1570
82. Ke J, Behal RH, Back SL, Nikolau BJ, Wurtele ES, Oliver DJ. The role of pyruvate dehydrogenase and acetyl-coenzyme A synthetase in fatty acid synthesis in developing Arabidopsis seeds. Plant Physiol. 2000;123(2):497–508. pmid:10859180 doi: 10.1104/pp.123.2.497
83. Chen M, Mooney BP, Hajduch M, Joshi T, Zhou M, Xu D et al. System analysis of an Arabidopsis mutant altered in de novo fatty acid synthesis reveals diverse changes in seed composition and metabolism. Plant Physiol. 2009;150(1):27–41. doi: 10.1104/pp.108.134882. pmid:19279196
84. Hayden DM, Rolletschek H, Borisjuk L, Corwin J, Kliebenstein DJ, Grimberg A et al. Cofactome analyses reveal enhanced flux of carbon into oil for potential biofuel production. Plant J. 2011;67(6):1018–28. doi: 10.1111/j.1365-313X.2011.04654.x. pmid:21615570
85. Branen JK, Chiou TJ, Engeseth NJ. Overexpression of acyl carrier protein-1 alters fatty acid composition of leaf tissue in Arabidopsis. Plant Physiol. 2001;127(1):222–9. pmid:11553750 doi: 10.1104/pp.127.1.222
86. Shockey JM, Fulda MS, Browse JA. Arabidopsis contains nine long-chain acyl-coenzyme a synthetase genes that participate in fatty acid and glycerolipid metabolism. Plant Physiol. 2002;129(4):1710–22. pmid:12177484 doi: 10.1104/pp.003269
87. Tjellstrom H, Strawsine M, Ohlrogge JB. Tracking synthesis and turnover of triacylglycerol in leaves. J Exp Bot. 2015;66(5):1453–61. doi: 10.1093/jxb/eru500. pmid:25609824
88. Vanhercke T, El Tahchy A, Shrestha P, Zhou XR, Singh SP, Petrie JR. Synergistic effect of WRI1 and DGAT1 coexpression on triacylglycerol biosynthesis in plants. FEBS Letters. 2013;587(4):364–9. doi: 10.1016/j.febslet.2012.12.018. pmid:23313251
89. Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science. 2014;345(6199):950–3. doi: 10.1126/science.1253435. pmid:25146293
90. Siloto RM, Findlay K, Lopez-Villalobos A, Yeung EC, Nykiforuk CL, Moloney MM. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell. 2006;18(8):1961–74. pmid:16877495 doi: 10.1105/tpc.106.041269
91. Wang X, Devaiah SP, Zhang W, Welti R. Signaling functions of phosphatidic acid. Prog Lipid Res. 2006;45(3):250–78. pmid:16574237 doi: 10.1016/j.plipres.2006.01.005
92. Lee J, Welti R, Schapaugh WT, Trick HN. Phospholipid and triacylglycerol profiles modified by PLD suppression in soybean seed. Plant Biotechnol J. 2011;9(3):359–72. doi: 10.1111/j.1467-7652.2010.00562.x. pmid:20796246
93. Lu S, Bahn SC, Qu G, Qin H, Hong Y, Xu Q et al. Increased expression of phospholipase Dα1 in guard cells decreases water loss with improved seed production under drought in Brassica napus. Plant Biotechnol J. 2013;11(3):380–9. doi: 10.1111/pbi.12028. pmid:23279050
94. Reyes JC, Muro-Pastor MI, Florencio FJ. The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol. 2004;134(4):1718–32. pmid:15084732 doi: 10.1104/pp.103.037788
95. Velmurugan N, Sung M, Yim SS, Park MS, Yang JW, Jeong KJ. Systematically programmed adaptive evolution reveals potential role of carbon and nitrogen pathways during lipid accumulation in Chlamydomonas reinhardtii. Biotechnol Biofuels. 2014;7(1):117. doi: 10.1186/s13068-014-0117-7. pmid:25258645
96. Bi YM, Zhang Y, Signorelli T, Zhao R, Zhu T, Rothstein S. Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity. Plant J. 2005;44(4):680–92. pmid:16262716 doi: 10.1111/j.1365-313x.2005.02568.x
97. Aubert D, Chevillard M, Dorne A, Arlaud G, Herzog M. Expression patterns of GASA genes in Arabidopsis thaliana: the GASA4 gene is up-regulated by gibberellins in meristematic regions. Plant Mol Biol. 1998;36(6):871–83. pmid:9520278
98. Chen M, Du X, Zhu Y, Wang Z, Hua S, Li Z et al. Seed fatty acid reducer acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in Arabidopsis. Plant Cell Environ. 2012; 35(12): 2155–69. doi: 10.1111/j.1365-3040.2012.02546.x. pmid:22632271
99. Pinot F, Beisson F. Cytochrome P450 metabolizing fatty acids in plants: characterization and physiological roles. FEBS J. 2011;278(2):195–205. doi: 10.1111/j.1742-4658.2010.07948.x. pmid:21156024
100. Sun L, Zhu L, Xu L, Yuan D, Min L, Zhang X. Cotton cytochrome P450 CYP82D regulates systemic cell death by modulating the octadecanoid pathway. Nature Commun. 2014;5:5372. doi: 10.1038/ncomms6372
101. Kim JS, Kim HJ, Lee IA, Lim JS, Seo JY. Regulation of adipocyte differentiation by glyceollins. Faseb J. 2009;23:712.6.
102. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012;40:D1178–86. doi: 10.1093/nar/gkr944. pmid:22110026
103. McCarthy FM, Wang N, Magee GB, Nanduri B, Lawrence ML, Camon EB et al. AgBase: a functional genomics resource for agriculture. BMC Genomics. 2006;7:229. pmid:16961921 doi: 10.1186/1471-2164-7-229
104. Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2007;23(2):257–8. pmid:17098774 doi: 10.1093/bioinformatics/btl567
105. Van Dongen S. Graph Clustering by Flow Simulation [Ph D thesis]. The Netherlands: University of Utrecht; 2000.
106. Aoki K, Ogata Y, Shibata D. Approaches for extracting practical information from gene co-expression networks in plant biology. Plant Cell Physiol. 2007;48(3):381–90. pmid:17251202 doi: 10.1093/pcp/pcm013
107. Severin AJ, Woody JL, Bolon YT, Joseph B, Diers BW, Farmer AD et al. RNA-Seq Atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol. 2010;10:160. doi: 10.1186/1471-2229-10-160. pmid:20687943
108. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods. 2008;5(7):621–8. doi: 10.1038/nmeth.1226. pmid:18516045
109. Wang L, Feng Z, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics. 2010;26(1):136–8. doi: 10.1093/
110. Fukuda N, Ikawa Y, Aoyagi T, Kozaki A. Expression of the genes coding for plastidic acetyl-CoA carboxylase subunits is regulated by a location-sensitive transcription factor binding site. Plant Mol Biol. 2013;82(4–5):473–83. doi: 10.1007/s11103-013-0075-7. pmid:23733600 University Staff: Request a correction | Centaur Editors: Update this record |