Quantized contact angles in the dewetting of a structured liquidIlton, M., Stasiak, P., Matsen, M. W. and Dalnoki-Veress, K. (2014) Quantized contact angles in the dewetting of a structured liquid. Physical Review Letters, 112 (6). 068303. ISSN 0031-9007
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1103/PhysRevLett.112.068303 Abstract/SummaryWe investigate the dewetting of a disordered melt of diblock copolymer from an ordered residual wetting layer. In contrast to simple liquids where the wetting layer has a fixed thickness and the droplets exhibit a single unique contact angle with the substrate, we find that structured liquids of diblock copolymer exhibit a discrete series of wetting layer thicknesses each producing a different contact angle. These quantized contact angles arise because the substrate and air surfaces each induce a gradient of lamellar order in the wetting layer. The interaction between the two surface profiles creates an effective interface potential that oscillates with film thickness, thus, producing a sequence of local minimums. The wetting layer thicknesses and corresponding contact angles are a direct measure of the positions and depths of these minimums. Self-consistent field theory is shown to provide qualitative agreement with the experiment.
Download Statistics DownloadsDownloads per month over past year Altmetric Funded Project Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |