• Afsar, A., Harwood, L.M., Hudson, M.J., Hodson, M.E., Shaw, E.J., 2014. Neocuproine-functionalized silica-coated magnetic nanoparticles for extraction of copper (II) from aqueous solution. Chemical Communications 50, 7477-7480.
• Auffan, M., Shipley, H. J., Yean, S., Kan, A. T., Tomson, M., Rose, J., Bottero, J.-Y., 2007. Nanomaterials as sorbents, in: Wiesner, M. R. & Bottero, J.-Y. (eds.), Environmental Nanotechnology, McGraw-Hill, New York, pp. 371-389.
• Baraka, A., Hall, P.J., Heslop, M.J., 2007. Preparation and characterization of melamine–formaldehyde–DTPA chelating resin and its use as an adsorbent for heavy metals removal from wastewater. Reactive and Functional Polymers, 67, 585-600.
• Berber-Mendoza, M.S., Leyva-Ramos, R., Alonso-Davila, P., Mendoza-Barron, J., Diaz-Flores, P.E., 2006. Effect of pH and temperature on the ion-exchange isotherm of Cd(II) and Pb(II) on clinoptilolite. Journal of Chemical Technology and Biotechnology 81 966-973.
• Brown, G. K., Cabaniss, S.E., MacCarthy, P., Leenheer, J. A., 1999. Cu (II) binding by a pH-fractionated fulvic acid. Analytica Chimica Acta, 402, 183-193.
• Buffle, J., Greter, F.L., Haerdi, W., 1977. Measurement of complexation properties of humic and fulvic acids in natural waters with lead and copper ion-selective electrodes. Analytical Chemistry, 49, 216-222.
• Castetbon, A.; Corrales, M.; Astruc, M.; Dotin, M.; Sterritt, R.M.; Lester, J.N., 1986 Comparative study of heavy metal complexation by fulvic acid. Environmental Technology Letters 7, 1-12.
• Chauhan, G., Pant, K.K., Nigam, K.D.P., 2015. Chelation technology: a promising green approach for resource management and waste minimization. Environmental Science: Processes and Impacts 17 12-40.
• Christl, I., Metzger, A., Heidmann, I., & Kretzschmar, R., 2005. Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding. Environmental Science and Technology, 39, 5319-5326.
• CL:AIRE, 2007. Understanding soil washing. CL:AIRE technical bulletin TB13. Pp. 4. www.claire.co.uk.
• Corami, A., Mignardi, S., Ferrini, V., 2008. Cadmium removal from single and multi-metal solutions by sorption on hydroxyapatite. Journal of Colloid and Interface Science, 317, 402-408.
• Depci, T., Kul, A. R., Önal, Y., 2012. Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from Van apple pulp: Study in single- and multi-solute systems. Chemical Engineering Journal, 200–202, 224-236.
• Dojino, 2017. Dojino Molecular Technologies, Inc. https://www.dojindo.com/Images/Product%20Photo/Chelate_Table_of_Stability_Constants.pdf. Accessed 8th May 2017.
• Dong, L., Zhu, Z., Qiu, Y., Zhao, J., 2010. Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent. Chemical Engineering Journal, 165, 827-834
• Figueira, P., Lopes, C.B., Daniel-da-Silva, A.L., Pereira, E., Duarte, A.C., Trindade, T., 2011. Removal of mercury (II) by dithiocarbamate surface functionalized magnetite particles: Application to synthetic and natural spiked waters. Water Research, 45, 5773-5784.
• Gerçel, Ö., Gerçel, H.F., 2007. Adsorption of lead (II) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida. Chemical Engineering Journal 132 289-297.
• Gharaibeh, S.H., Abu-el-sha’r, W.Y., Al-Kofahi, M.M., 1998. Removal of selected heavy metals from aqueous solutions using processed solid residue of olive mill products. Water Research 32 498-502.
• Gill, R., Ramsey, M.H., 1997. What a geochemical analysis means. In: Gill, R. (ed.) Modern Analytical Geochemistry: An Introduction to Quantitative Chemical Analysis Techniques for Earth, Environment and Materials Scientists (Longman Geochemistry Series). Pp 1 – 11
• Goel, J., Kadirvelu, K., Rajagopal, C., Garg, V.K., 2005. Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies. Journal of Hazardous Materials B125 211-220.
• Griffiths, R.A., 1995. Soil-washing technology and practice. Journal of Hazardous Materials 40, 175-189.
• Grzybowski, W., 2000. Comparison between stability constants of cadmium and lead complexes with humic substances of different molecular weight isolated form Baltic Sea water. Oceanologia 42, 473-482.
• Heidmann, I., Christl, I., Leu, C., Kretzschmar, R., 2005. Competitive sorption of protons and metal cations onto kaolinite: experiments and modelling. Journal of Colloid and Interface Science, 282, 270-282.
• Herbrich, M., Gerke, H.H., Bens, O., Sommer, M., 2017. Water balance and leaching of dissolved organic and inorganic carbon of eroded Luvisols using high precision weighing lysimeters. Soil and Tillage Research 165 144 – 160.
• Hirata, S., 1981. Stability constants for the complexes of transition-metal ions with fulvic and humic acids in sediments measured by gel filtration. Talanta 28 809-815.
• IPCS 1995. Inorganic Lead. International Programme on Chemical Safety, World Health Organisation, Geneva, Switzerland.
• Jiang, K., Sun, T.-H., Sun, L.-N., Li, H.-B. 2006. Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline. Journal of Environmental Sciences, 18, 1221-1225.
• Kalmykova, Y., Stromvall, A.M., Steenari, B.M. 2008. Adsorption of Cd, Cu, Ni, Pb and Zn on Sphagnum peat from solutions with low metal concentrations. Journal of Hazardous Materials, 152, 885-891.
• Kaya, A., Ören A.H., 2005. Adsorption of zinc from aqueous solutions to bentonite. Journal of Hazardous Materials B125 183-189.
• Kerndorff, H., Schnitzer, M. 1980. Sorption of metals on humic acid. Geochimica et Cosmochimica Acta, 44, 1701-1708.
• Koehler, F.M., Rossier, M., Waelle, M., Athanassiou, E K., Limbach, L.K., Grass, R.N., Gunther, D., Stark, W.J. 2009. Magnetic EDTA: coupling heavy metal chelators to metal nanomagnets for rapid removal of cadmium, lead and copper from contaminated water. Chemical Communication,s 32, 4862-4864.
• Lanphear, B., Hornung, R., Khoury, J., Yolton, K., Baghurst, P., Bellinger, D., Canfield, R., Dietrich, K., Bornschein, R., Greene, T., Rothenberg, S., Needleman, H., Schnaas, L., Wasserman, G., Graziano, J., 2005. Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environmental Health Perspectives, 113, 894-899.
• Ledesma, J.L.J., Futter, M.N., Laudon, H., Evans, C.D., Köhler, S.J., 2016. Boreal forest riparian zones regulate stream sulfate and dissolved organic carbon. Science of the Total Environment 560-561 110 – 122.
• Lee, B.S., Lajtha, K., 2016 Hydrologic and forest management controls on dissolved organic matter characterisitics in headwater streams of old-growth forests in the Oregon Cascades. Forest Ecology and Management 380 11 - 22.
• Leenheer, J.A., McKnight, D.M., Thurman, E.M., MacCarthy P., 1995. Structural Components and Proposed Structural Models of Fulvic Acid from the Suwannee River. In: Averett, R.C., Leenheer, J.A., McKnight, D.M., Thorn, K.A (eds) Humic Substances in the Suwannee River, Georgia: Interactions, Properties, and Proposed Structures (USGS Water-Supply Paper 2373). United States Geological Survey, Reston, Virginia.
• Levya Ramos, R., Bernal Jacome, L.A., Mendoza Barron, J., Fuentes Rubio, L., Geurrero Coronado, R.M., 2002. Adsorption of zinc (II) from an aqueous solution onto activated carbon. Journal of Hazardous Materials B90 27-38.
• Li, Y.-H., Di, Z., Ding, J., Wu, D., Luan, Z., Zhu, Y., 2005. Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nantubes. Water Research 39 605-609.
• Lindsay, W.L., 1979. Chemical equilibria in soils. Wiley, New York.
• Liu, J.-F., Zhao, Z.-S., Jiang, G.-B., 2008b. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environmental Science and Technology, 42, 6949-6954.
• Liu, X., Hu, Q., Fang, Z., Zhang, X., Zhang, B., 2008a. Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir, 25, 3-8.
• McBride M.B., 1994. Environmental chemistry of soils, Oxford University Press, Oxford
• Neal, C., Skeffington, R., Neal, M., Wyatt, R., Wickham, H., Hill, L., Hewitt, N., 2004. Rainfall and runoff water quality of the Pang and Lambourn, tributaries of the River Thames, south-eastern England. Hydrology and Earth System Science 8 601-613.
• Nieboer, E., Richardson, D.H.S., 1989. The replacement of the nondescript term “heavy metals” by a biologically and chemically significant classification of metal ions. Environmental Pollution Series B, Chemical and Physical 1 3–26.
• Pais, I., Benton Jones Jr, J., 1997. The Handbook of Trace Elements, St Lucie Press, Boca Raton, Florida.
• Prasad, B., Sinha, M.K., 1980. Physical and chemical characterization of soil and poultry litter humic and fulvic metal complexes. Plant and Soil 54, 223-232.
• Qin, F., Wen, B., Shan, X.-Q., Xie, Y.-N., Liu, T., Zhang, S.-Z., Khan, S.U., 2006. Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat. Environmental Pollution, 144, 669-680.
• Ram, N.; Raman, K.V.; 1984. Stability constants of complexes of metals with humic and fulvic acids under non-acid-conditions. Journal of Plant Nutrition and Soil Science, 147, 171-176.
• Saar, R.A., Weber, J.H., 1980. Lead(II)-fulvic acid complexes, conditional stability constants, solubility and implications for lead(II) mobility. Environmental Science and Technology, 14, 877-880.
• Seifert, A.-G., Roth, V.-N., Dittmar, T., Gleixner, G., Breuer, L., Houska, T., Marxsen, J., 2016. Comparing molecular composition of dissolved organic matter in soil and stream water: Influence of land use and chemical characteristics. Science of the Total Environment 571 142-152.
• Sekaly, A.L.R., Mandal, R., Hassan, N.M., Murimboh, J., Chakrabarti, C. L., Back, M. H., Gregoire, D.C., Schroeder, W.H., 1999. Effect of metal/fulvic acid mole ratios on the binding of Ni (II), Pb (II), Cu (II), Cd (II), and Al (III) by two well-characterized fulvic acids in aqueous model solutions. Analytica Chimica Acta, 402, 211-221.
• Semer, R., Reddy, K.R., 1996. Evaluation of soil washing process to remove mixed contaminants from a sandy loam. Journal of Hazardous Materials 45, 45-57.
• Sterritt, R.M., Lester, J.N., 1984. Comparison of methods for the determination of conditional stability constants of heavy metal-fulvic acid complexes. Water Research, 18, 1149-1153.
• Tipping E., 2002. Cation Binding by Humic Substances, Cambridge University Press, Cambridge.
• Trivedi, P., Axe, L., Dyer, J., 2001. Adsorption of metal ions onto goethite: single-adsorbate and competitive systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 191, 107-121.
• Tsang, D.C.W., Lo, I.M., Surampalli, R.Y., 2012. Chapter 1: Design, Implementation and Economic/Societal Considerations of Chelant-Enhanced Soil Washing. In: Tsang, D.C.W., Lo, I.M., Surampalli, R. Y. (eds.) Chelating Agents for Land Decontamination Technologies. American Society of Civil Engineers, Reston, Virginia.
• Van den Berg, L.J.L, Shotbolt, L., Ashmore, M.R., 2012. Dissolved organic carbon (DOC) concentrations in UK soils and the influence of soil, vegetation type and seasonality. Science of the Total Environment, 427-428, 269-276.
• Walsh, J.N., 1997. Inductively coupled plasma-atomic emission spectrometry (ICP-AES). In: Gill, R. (ed.) Modern Analytical Geochemistry: An Introduction to Quantitative Chemical Analysis Techniques for Earth, Environment and Materials Scientists (Longman Geochemistry Series). Pp 41-66.
• Wang, X.S., Zhu, L., Lu, H.J., 2011. Surface chemical properties and adsorption of Cu (II) on nanoscale magnetite in aqueous solutions. Desalination, 276, 154-160.
• WHO, 2010. Exposure to lead: a major public health concern. World Health Organisation, Geneva, Switzerland.
• Xue, Y., Hou, H., Zhu, S., 2009. Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag. Journal of Hazardous Materials, 162, 391-401.
• Zhang, F., Lan, J., Zhao, Z., Yang, Y., Tan, R., Song, W., 2012. Removal of heavy metal ions from aqueous solution using Fe3O4-SiO2-poly(1,2-diaminobenzene) core-shell sub-micron particles. Journal of Colloid and Interface Science 387 205-212.
• Zhang, F., Zhu, Z., Dong, Z., Cui, Z., Wang, H, Hu, W., Zhao, P., Wang, P., Wei, S, Li, R, Ma, J., 2011. Magnetically recoverable facile nanomaterials: synthesis, characterization and application in remediation of heavy metals. Microchemical Journal 98 328-333.