On the polarizability and capacitance of the cubeHelsing, J. and Perfekt, K.-M. (2013) On the polarizability and capacitance of the cube. Applied and Computational Harmonic Analysis, 34 (3). pp. 445-468. ISSN 1063-5203
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1016/j.acha.2012.07.006 Abstract/SummaryAn efficient integral equation based solver is constructed for the electrostatic problem on domains with cuboidal inclusions. It can be used to compute the polarizability of a dielectric cube in a dielectric background medium at virtually every permittivity ratio for which it exists. For example, polarizabilities accurate to between five and ten digits are obtained (as complex limits) for negative permittivity ratios in minutes on a standard workstation. In passing, the capacitance of the unit cube is determined with unprecedented accuracy. With full rigor, we develop a natural mathematical framework suited for the study of the polarizability of Lipschitz domains. Several aspects of polarizabilities and their representing measures are clarified, including limiting behavior both when approaching the support of the measure and when deforming smooth domains into a non-smooth domain. The success of the mathematical theory is achieved through symmetrization arguments for layer potentials.
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |