1. Devoto, A., Piffanelli, P., Nilsson, I., Wallin, E., Panstruga, R., et al. (1999) Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J. Biol. Chem. 274, 34993-35004.
2. Kim, M.C., Panstruga, R., Elliott, C., Müller, J., Devoto, A., et al. (2002) Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature. 416, 447-451.
3. Büschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., et al. (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88, 695-705.
4. Appiano, M., Pavan, S., Catalano, D., Zheng, Z., Bracuto, V., et al. (2015) Identification of candidate MLO powdery mildew susceptibility genes in cultivated Solanaceae and functional characteriza-tion of tobacco NtMLO1. Transgenic Res. 24, 847-858.
5. Ablazov, A., and Tombuloglu, H. (2016) Genome-wide identification of the mildew resistance locus O (MLO) gene family in novel cereal model species Brachypodium distachyon. Eur. J. Plant Pathol. 145, 239-253.
6. Chen, Y., Wang, Y., and Zhang, H. (2014) Genome-wide analysis of the mildew resistance locus O (MLO) gene family in tomato (Solanum lycopersicum L.). Plant Omics 7.2, 87-93.
7. Deshmukh, R., Singh, V.K. and Singh, B.D., (2017) Mining the Cicer arietinum genome for the mildew locus O (Mlo) gene family and comparative evolutionary analysis of the Mlo genes from Medicago truncatula and some other plant species. J. Plant Res. 130(2), 239-253.
8. Devoto, A., Hartmann, H.A., Piffanelli, P., Elliott, C., Simmons, C., et al. (2003) Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. J. Mol. Evol. 56, 77-88.
9. Feechan, A., Jermakow, A.M., Torregrosa, L., Panstruga, R., and Dry, I.B. (2009) Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew. Funct. Plant Biol. 35, 1255-1266.
10. Iovieno, P., Andolfo, G., Schiavulli, A., Catalano, D., Ricciardi, L., et al. (2015) Structure, evolution and functional inference on the Mildew Locus O (MLO) gene family in three cultivated Cucurbitaceae. BMC Genomics 16: 1112.
11. Kaufmann, H., Qiu, X., Wehmeyer, J., and Debener, T. (2012) Isolation, molecular characterization, and mapping of four rose MLO orthologs. Front. Plant. Sci. 3, 244.
12. Konishi, S., Sasakuma, T., and Sasanuma, T. (2010) Identification of novel Mlo family members in wheat and their genetic characterization. Genes Genet. Syst. 85, 167-175.
13. Liu, L.P., Qu, J.W., Yi, X.Q. and Huang, H.H., (2017) Genome-wide identification, classification and expression analysis of the Mildew Resistance Locus O (MLO) gene family in sweet orange (Citrus sinensis). Braz. Arch. Biol. Technol. 60, e17160474.
14. Liu, Q., and Zhu, H. (2008) Molecular evolution of the MLO gene family in Oryza sativa and their functional divergence. Gene 409, 1-10.
15. Pessina, S., Pavan, S., Catalano, D., Gallotta, A., Visser, R.G., et al. (2014) Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica. Bmc Genomics 15, 618.
16. Rispail, N., and Rubiales, D. (2016) Genome-wide identification and comparison of legume MLO gene family. Sci. Rep. 6, 32673.
17. Shen, Q., Zhao, J., Du, C., Xiang, Y., Cao, J., and Qin, X. (2012) Genome-scale identification of MLO domain-containing genes in soybean (Glycine max L. Merr.). Genes Genet. Syst. 87, 89-98.
18. Zhou, S., Jing, Z., and Shi, J. (2013) Genome-wide identification, characterization, and expression analysis of the MLO gene family in Cucumis sativus. Genet. Mol. Res. 12, 6565-6578.
19. Panstruga, R. (2005) Serpentine plant MLO proteins as entry portals for powdery mildew fungi. Biochem. Soc. Trans. 33, 389-392.
20. Jørgensen, J.H. (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. In Breeding for disease resistance (Springer), pp. 141-152.
21. Wolter, M., Hollricher, K., Salamini, F., and Schulze-Lefert, P. (1993) The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype. Mol. Gen. Genet. 239, 122-128.
22. Piffanelli, P., Zhou, F., Casais, C., Orme, J., Jarosch, B., et al. (2002) The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol. 129, 1076-1085.
23. Piffanelli, P., Ramsay, L., Waugh, R., Benabdel-mouna, A., D'Hont, A., et al. (2004) A barley cultivation-associated polymorphism conveys resistance to powdery mildew. Nature 430, 887-891.
24. AcevedoGarcia, J., Spencer, D., Thieron, H., Reinstädler, A., Hammond Kosack, K., et al. (2017) mlobased powdery mildew resistance in hexaploid bread wheat generated by a non transgenic TILLING approach. Plant Biotechnol. J. 15, 367-378.
25. Pessina, S., Lenzi, L., Perazzolli, M., Campa, M., Dalla Costa, L., et al. (2016) Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine. Horticulture Res. 3, 16016.
26. Consonni, C., Bednarek, P., Humphry, M., Francocci, F., Ferrari, S., et al. (2010) Tryptophan-derived metabolites are required for antifungal defense in the Arabidopsis mlo2 mutant. Plant Physiol. 152, 1544-1561.
27. Bai, Y., Pavan, S., Zheng, Z., Zappel, N.F., Reinstadler, A., et al. (2008) Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of mlo function. Mol. Plant Microbe Interact. 21, 30-39.
28. Qiu, X., Wang, Q., Zhang, H., Jian, H., Zhou, N., et al. (2015) Antisense RhMLO1 gene transformation enhances resistance to the powdery mildew pathogen in Rosa multiflora. Plant Mol. Biol. Rep. 33, 1659-1665.
29. Jiwan, D., Roalson, E.H., Main, D., and Dhingra, A. (2013) Antisense expression of peach mildew resistance locus O (PpMlo1) gene confers cross-species resistance to powdery mildew in Fragaria x ananassa. Transgenic Res. 22, 1119-1131.
30. Pessina, S., Angeli, D., Martens, S., Visser, R.G., Bai, Y., et al. (2016) The knock down of the expression of MdMLO19 reduces susceptibility to powdery mildew (Podosphaera leucotricha) in apple (Malus domestica). Plant Biotech. J. 14, 2033-2044.
31. Jiang, P., Chen, Y., and Wilde, H.D. (2016) Reduction of MLO1 expression in petunia increases resistance to powdery mildew. Sci. Hort. 201, 225-229.
32. Humphry, M., Reinstadler, A., Ivanov, S., Bisseling, T., and Panstruga, R. (2011) Durable broadspectrum powdery mildew resistance in pea er1 plants is conferred by natural loss of function mutations in PsMLO1. Mol. Plant Pathol. 12, 866-878.
33. Berg, J.A., Appiano, M., Martínez, M.S., Hermans, F.W., Vriezen, W.H., et al. (2015) A transposable element insertion in the susceptibility gene CsaMLO8 results in hypocotyl resistance to powdery mildew in cucumber. BMC Plant Biol. 15, 243.
34. Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., et al. (2014) Simultaneous editing of three homoeoal-leles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnol. 32, 947-951.
35. Peries, O. (1962) Studies on strawberry mildew, caused by Sphaerotheca macularis (Wallr. ex Fries) Jaczewski. Ann. Appl. Biol. 50, 211-224.
36. Lifshitz, C., Shalit, N., Slotzky, S., Tanami, Z., Elad, Y., and Dai, N. (2008) Heritability s studies and DNA markers for powdery mildew resistance in strawberry (Fragaria × ananassa Duchesne). VI International Strawberry Symposium 842, 561-564.
37. Shulaev, V., Sargent, D.J., Crowhurst, R.N., Mockler, T.C., Folkerts, O., et al. (2010) The genome of woodland strawberry (Fragaria vesca). Nature Genet. 43, 109-116.
38. Miao, L., Jiang, M., Zhang, Y., Yang, X., Zhang, H., et al. (2016) Genomic identification, phylogeny, and expression analysis of MLO genes involved in susceptibility to powdery mildew in Fragaria vesca. Genet. Mol. Res. 15, gmr15038400.
39. Slovin, J.P., Schmitt, K., and Folta, K.M. (2009) An inbred line of the diploid strawberry Fragaria vesca f. semperflorens for genomic and molecular genetic studies in the Rosaceae. Plant Methods 5, 15.
40. Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.
41. Saitou, N., and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
42. Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599.
43. Bindschedler, L.V., Palmblad, M., and Cramer, R. (2008) Hydroponic isotope labelling of entire plants (HILEP) for quantitative plant proteomics; an oxidative stress case study. Phytochemistry 69, 1962-1972.
44. Jambagi, S., and Dunwell, J.M. (2015) Global transcriptome analysis and identification of differentially expressed genes after infection of Fragaria vesca with powdery mildew (Podosphaera aphanis). Transcriptomics: Open Access 3, 1. DOI:10.4172/2329-8936.1000106.
45. Livak, K.J., and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25, 402-408.
46. Winterhagen, P., Howard, S.F., Qiu, W., and Kovacs, L.G. (2008) Transcriptional up-regulation of grapevine MLO genes in response to powdery mildew infection. Am. J. Enol. Vitic. 59, 159-168.
47. Elliott, C., Zhou, F., Spielmeyer, W., Panstruga, R., and Schulze-Lefert, P. (2002) Functional conservation of wheat and rice Mlo orthologs in defense modulation to the powdery mildew fungus. Mol. Plant Microbe Interact. 15, 1069-1077.
48. Consonni, C., Humphry, M.E., Hartmann, H.A., Livaja, M., Durner, J., et al. (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nature Genet. 38, 716-720.