• Adams, J. R., and Merz, A. R. (1929). Hygroscopicity of fertilizer materials and mixtures. Industrial & Engineering Chemistry 21:305-307. doi: 10.1021/ie50232a003
• Arthur, E., Tuller, M., Moldrup, P., Jensen, D. K., & De Jonge, L. W. (2015). Prediction of clay content from water vapour sorption isotherms considering hysteresis and soil organic matter content. European Journal of Soil Science, 66(1), 206-217.
• Bolz, R. E., Tuve, G. L. (1973) Handbook of tables for applied engineering science (edn). CRC Press, Boca Raton, FL
• Cochrane, T. T., & Cochrane, T. A. (2005). Osmotic potential properties of solutes common in the soil-plant solution continuum. Soil science, 170, 433-444.
• Ciocca, F., Lunati, I., and Parlange, M. B. (2014). Effects of the water retention curve on evaporation from arid soils. Geophys. Res. Lett. 41:3110-3116. doi:10.1002/2014GL059827
• Gran, M., Carrera, J., Olivella, S., & Saaltink, M. W. (2011). Modeling evaporation processes in a saline soil from saturation to oven dry conditions. Hydrol. and Earth Syst. Sci., 15, 2077-2089. doi:10.5194/hess-15-2077-2011
• Grattoni, A., Merlo, M., & Ferrari, M. (2007). Osmotic pressure beyond concentration restrictions. J. Phys. Chem. B, 111, 11770-11775. doi: 10.1021/jp075834j
• Hamer, W. J. & Wu, Y. C. (1972) Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25oC. J. Phys. Chem. Ref. Data. 1 (4) 1047:1099.
• Jensen, D. K., Tuller, M., de Jonge, L. W., Arthur, E., & Moldrup, P. (2015). A New Two-Stage Approach to predicting the soil water characteristic from saturation to oven-dryness. Journal of Hydrology, 521, 498-507.
• Khlosi, M., Cornelis, W. M., Gabriels, D. & Sin, G. (2006) Simple modification to describe the soil water retention curve between saturation and oven dryness. Water Resour. Res. 42:W11501.doi: 10.1029/2005WR004699
• Khlosi, M., Cornelis, W. M., Douaik, A., van Genuchten, M. T., & Gabriels, D. (2008). Performance evaluation of models that describe the soil water retention curve between saturation and oven dryness. Vadose Zone Journal, 7: 87-96. doi:10.2136/vzj2007.0099
• Kosugi K. (1999) General Model for Unsaturated Hydraulic Conductivity for Soils with Lognormal Pore-Size Distribution. Soil Sci. Soc. Am. J. 63 (2) doi:10.2136/sssaj1999.03615995006300020003x
• Lawrence M. G. (2005) The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bulletin of the American Meteorological Society. 86:225-33.
• Lu, S., Ren, T., Gong, Y., & Horton, R. (2008). Evaluation of three models that describe soil water retention curves from saturation to oven dryness. Soil Science Society of America Journal, 72(6), 1542-1546.
• Lu, N. (2016). Generalized soil water retention equation for adsorption and capillarity. Journal of Geotechnical and Geoenvironmental Engineering, 142
• Marshall, T. J., Holmes, J. W., & Rose, C. W. (1996). Soil physics (3rd ed.). Cambridge University Press.
• Mathworks. (2017). Global Optimization Toolbox: User's Guide (r2017a). Retrieved August 2, 2017 from www.mathworks.com/help/pdf_doc/optim/optim_tb.pdf
• Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12:513–522. doi:10.1029/ WR012i003p00513
• Muthu, S. & Brant, J. A. (2015) Interrelationships Between Flux, Membrane Properties, and Soil Water Transport in a Subsurface Pervaporation Irrigation System. Environ. Eng. Sci. 32: 539-550. doi:10.1089/ees.2014.0519
• Nachshon, U., Weisbrod, N., Dragila, M. I., & Grader, A. (2011). Combined evaporation and salt precipitation in homogeneous and heterogeneous porous media. Water Resour. Res., 47(3). doi: 10.1029/2010WR009677
• Néel, J. (1995) Pervaporation. In: Noble, R.D., and Stern, S. A. (eds) Membrane separations technology: principles and applications. 1st edn. Elsevier, Amsterdam, pp143-212.
• Paterson, E., Gebbing, T., Abel, C., Sim, A., & Telfer, G. (2007). Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol., 173, 600-610. doi: 10.1111/j.1469-8137.2006.01931.x
• Peters, A. (2013) Simple consistent models for water retention and hydraulic conductivity in the complete moisture range. Water Resour. Res. 49:6765-6780. doi: 10.1002/wrcr.20548
• Quiñones-Bolaños, E., and Zhou, H. (2006). Modeling water movement and flux from membrane pervaporation systems for wastewater microirrigation. J. Environ. Eng. 132:1011–1018. doi: 10.1061/(ASCE)0733-9372(2006)132:9(1011)
• Rossi, C. and Nimmo, J.R. (1994) Modeling of soil water retention from saturation to oven dryness. Water Resour. Res. 30: 701-708.
• Scatchard, G., Hamer, W. J. & Wood, S. E. (1938) Isotonic solutions. I. The chemical potential of water in aqueous solutions of sodium chloride, potassium chloride, sulphuric acid, sucrose, urea and glycerol at 25oC. J. Am. Chem. Soc. 60: 3061–3070. doi: 10.1021/ja01279a066
• Shampine, L. F. and M. W. Reichelt (1997) The MATLAB ODE Suite. SIAM J. Sci. Comput. 18: 1–22.
• Sule, M., Jiang, J., Templeton, M., Huth, E., Brant, J., and Bond, T. (2013). Salt rejection and water flux through a tubular pervaporative polymer membrane designed for irrigation applications. Environ. Technol. 34:1329–1339 doi:10.1080/09593330.2012.746736
• Todman, L. C., Ireson, A. M., Butler, A. P. & Templeton, M. R. (2013a) Modeling vapor flow from a pervaporative irrigation system. Vadose Zone J. 12 doi:10.2136/vzj2013.05.0079
• Todman, L. C., Ireson, A. M., Butler, A. P., and Templeton, M. R.. (2013b). Water vapor transport in soils from a pervaporative irrigation system. J. Environ. Eng. 139:1062–1069. doi:10.1061/(ASCE)EE.1943-7870.0000715
• van Genuchten, M.T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44:892–898. doi:10.2136/sssaj1980.03615995004400050002x