Accessibility navigation

Biology and trophic interactions of lucerne aphids

Ryalls, J. M. W., Riegler, M., Moore, B. D. and Johnson, S. N. (2013) Biology and trophic interactions of lucerne aphids. Agricultural and Forest Entomology, 15 (4). pp. 335-350. ISSN 1461-9555

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1111/afe.12024


Lucerne or alfalfa Medicago sativa is the most important temperate forage legume worldwide. Only one or two varieties of lucerne were grown in the U.S.A. and Australia (the two leading exporters of lucerne) before the late 1950s and late 1970s, respectively. These dates coincided with the arrival of aphid species, which devastated lucerne stands and prompted the development of aphid resistant cultivars. Lucerne-feeding aphids, including bluegreen aphids Acyrthosiphon kondoi, pea aphids Acyrthosiphon pisum, spotted alfalfa aphids Therioaphis trifolii maculata and cowpea aphids Aphis craccivora, however, still present significant risks for the lucerne industry worldwide and account for 25% of global production losses. Moreover, increased production costs, negative environmental effects and emerging aphid resistance to insecticide applications have led to a narrowing of management options against lucerne aphids. Understanding lucerne aphid biology and trophic ecology will be needed to develop future management practices, including biological control. We review and synthesize research on the four lucerne aphid species, focussing on cultivar resistance and their interactions with other organisms, including predators, parasitoids, entomopathogens and bacterial symbionts. The effects of global climate change are considered, with a particular emphasis on the potential for compromised aphid resistance in lucerne cultivars under future climates. We conclude by identifying future research questions and perspectives for the sustainable management of lucerne aphids. These include the characterization of plant secondary metabolites associated with natural enemy recruitment, an understanding of the role of endosymbionts in cultivar resistance and a better comprehension of multi-trophic interactions of lucerne aphids, both with other herbivores and higher trophic groups.

Item Type:Article
Divisions:No Reading authors. Back catalogue items
ID Code:74785
Publisher:John Wiley & Sons

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation