Accessibility navigation

On some standard objections to mathematical conventionalism

Schroeder, S. (2018) On some standard objections to mathematical conventionalism. Belgrade Philosophical Annual, 30. pp. 83-98. ISSN 0353-3891

Text (Open access) - Published Version
· Please see our End User Agreement before downloading.

[img] Text - Accepted Version
· Restricted to Repository staff only


It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.5937/BPA1730083S


According to Wittgenstein, mathematical propositions are rules of grammar, that is, conventions, or implications of conventions. So his position can be regarded as a form of conventionalism. However, mathematical conventionalism is widely thought to be untenable due to objections presented by Quine, Dummett and Crispin Wright. It has also been argued that only an implausibly radical form of conventionalism could withstand the critical implications of Wittgenstein’s rule-following considerations. In this article I discuss those objections to conventionalism and argue that none of them is convincing.

Item Type:Article
Divisions:Arts, Humanities and Social Science > School of Humanities > Philosophy
ID Code:75539
Publisher:Institute for Philosophy, University of Belgrade


Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation