Albert I, Böhm H, Albert M, Feiler CE, Imkampe J, Wallmeroth N, Brancato C, Raaymakers TM, Oome S, Zhang H, Krol E, Grefen C, Gust AA, Chai J, Hedrich R, van den Ackerveken G, Nürnberger T. 2015. An RLP23–SOBIR1–BAK1 complex mediates NLP-triggered immunity. Nature Plants 1, 15140.
Barnes SE, Shaw MW. 2003. Infection of commercial hybrid Primula seed by Botrytis cinerea and latent disease spread through the plants. Phytopathology 93, 573–578.
Benito EP, ten Have A, van't Klooster JW, van Kan, JAL 1998. Fungal and plant gene expression during synchronized infection of tomato leaves by Botrytis cinerea. European Journal of. Plant Pathology 104, 207–220
Büttner P, Koch F, Voigt K, Quidde T, Risch S, Blaich R, Brückner B, Tudzynski P. 1994. Variations in ploidy among isolates of Botrytis cinerea: implications for genetic and molecular analyses. Current Genetics 25, 445-450
Coertze S, Holz G. 2002. Epidemiology of Botrytis cinerea on grape: wound infection by dry, airborne conidia. South African Journal of Enology and Viticulture 23, 72–77.
Cuesta Arenas Y, Kalkman RIC, Schouten A, Dieho M, Vredenbregt P, Uwumukiz B, Osés Ruiz M, van Kan JAL. 2010 Functional analysis and mode of action of phytotoxic Nep1-like proteins of Botrytis cinerea. Physiological and Molecular Plant Pathology 74, 376-386
Edwards SG, Seddon B. 2001. Selective media for the specific isolation and enumeration of Botrytis cinerea conidia. Letters in Applied Microbiology 32, 63–66.
Elad Y, Williamson B, Tudzynski P, Delen N. 2004 Botrytis spp. and diseases they cause in agricultural systems – an introduction in Botrytis, biology, pathology and control (Y. Elad, B. Williamson, Paul Tudzynski, Nafiz Delen eds) pp1-8. Dordrecht NL: Springer
Elad Y, Pertot I, Cotes Prado AM, Stewart, A. 2016 Plant Hosts of Botrytis spp. In: Botrytis – The fungus, the pathogen and its management in agricultural systems. (Fillinger, S. and Elad, Y. ed), pp413-486. Cham, Springer
Gronover CS, Kasulke D, Tudzynski P, Tudzynski B. 2001. The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Molecular Plant-Microbe Interactions 14, 1293–1302.
Harren K, Schumacher J, Tudzynski B. 2012. The Ca 2+ /calcineurin-dependent signalling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity. PLoS ONE 7, doi: 10.1371/journal.pone.0041761
Horst K, 1985. Botrytis blight. In: Compendium of Rose Diseases. p186 St Paul, Minnesota: American Phytopathological Society,.
Jarvis WR. 1994. Latent infections in the pre- and postharvest environment. HortScience 29, 749–751.
Kars I, Krooshof GH, Wagemakers L, Joosten R, Benen JAE, van Kan JAL. 2005. Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. The Plant Journal 43, 213-225
Klimpel A, Schulze Gronover C, Willliamson B, Stewart J, Tudzynski B. 2002. The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity. Molecular Plant Pathology 3, 439–450.
Rajaguru BAP, Shaw MW. 2010. Genetic differentiation between hosts and locations in populations of latent Botrytis cinerea in southern England. Plant Pathology 59, 1081–1090.
Schouten A, Baarlen P, van Kan, JAL. 2008. Phytotoxic Nep1-like proteins from the necrotrophic fungus Botrytis cinerea associate with membranes and the nucleus of plant cells. New Phytologist 177, 493–505.
Schumacher J. 2016 Signal transduction cascades regulating differentiation and virulence in Botrytis cinerea. In: Botrytis – The fungus, the pathogen and its management in agricultural systems. (Fillinger, S. and Elad, Y. ed), pp247-267 Cham, Springer
Shaw MW, Emmanuel CJ, Emilda D, Terhem RB, Shafia A, Tsamaidi D, Emblow M, van Kan, JAL. 2016. Analysis of cryptic, systemic Botrytis infections in symptomless hosts. Frontiers in Plant Science 7: 625. doi: 10.3389/fpls.2016.00625
Sowley ENK, Dewey FM, Shaw MW. 2010. Persistent, symptomless, systemic, and seed-borne infection of lettuce by Botrytis cinerea. European Journal of Plant Pathology 126, 61–71.
van Kan JAL. 2006. Licensed to kill : the lifestyle of a necrotrophic plant pathogen. Trends in Plant Science 11, 247–253.
van Kan JAL, Stassen JHM, Mosbach A, van Der Lee TAJ, Faino L, Farmer A D, Papasotiriou DG, Zhou S, Seidl MF, Cottam E, Edel D, Hahn M, Schwartz DC, Dietrich RA, Widdison S, Scalliet G. 2017. A gapless genome sequence of the fungus Botrytis cinerea. Molecular Plant Pathology 18: 75–89.
Williamson B, Tudzynski B, Tudzynski P, van Kan JAL. 2007. Botrytis cinerea : the cause of grey mould disease. Molecular Plant Pathology 8, 561–580.
Zhang N, Zhang S, Borchert S, Richardson K, Schmid J. 2011. High levels of a fungal superoxide dismutase and increased concentration of a PR-10 plant protein in associations between the endophytic fungus Neotyphodium lolii and Ryegrass. Molecular Plant-Microbe Interactions 24, 984–992.
Zhang L, Kars I, Essenstam B, Liebrand TWH, Wagemakers L, Elberse J, Tagkalaki P, Tjoitang D, van den Ackerveken G, van Kan JAL. 2014. Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the Arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1 Plant Physiology 164, 352-364
Zheng L, Campbell M, Murphy J, Lam S, Xu J, 2000. The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea. Molecular Plant-Microbe Interactions 13, 724–732.