1. Kearsey MJ, Farquhar AG. QTL analysis in plants: where are
we now? Heredity 1998;8(2):137–42.
2. Mackay TF, Stone EA, Ayroles JF. The genetics of quantitative
traits: challenges and prospects. Nat Rev Genet 2009;10(8):
565–77.
3. Buckler ES, Holland JB, Bradbury PJ, et al. The genetic architecture
of maize flowering time. Science 2009;325(5941):714–18.
4. Kroymann J, Mitchell-Olds T. Epistasis and balanced polymorphism
influencing complex trait variation. Nature 2005;
435(7038):95–8.
5. Heffner EL, Sorrells ME, Jannink JL. Genomic selection for
crop improvement. Crop Sci 2009;49(1):1–12.
6. Zhang YM, Xu S. Advanced statistical methods for detecting
multiple quantitative trait loci. Recent Res Dev Genet Breed
2005a;2:1–23.
7. Gibson G, Weir B. The quantitative genetics of transcription.
Trends Genet 2005;21(11):616–23.
8. Gilad Y, Rifkin SA, Pritchard JK. Revealing the architecture of
gene regulation: the promise of eQTL studies. Trends Genet
2008;24(8):408–15.
9. Chan EK, Rowe HC, Hansen BG, et al. The complex genetic
architecture of the metabolome. PLoS Genet 2010;6(11):
e1001198.
10.Park E, Guo J, Shen S, et al. Population and allelic variation of
A-to-I RNA editing in human transcriptomes. Genome Biol
2017;18(1):143.
11.Rand AC, Jain M, Eizenga JM, et al. Mapping DNA methylation
with high-throughput nanopore sequencing. Nat Methods
2017;14(4):411–13.
12.Jansen RC. Interval mapping of multiple quantitative trait
loci. Genetics 1993;135(1):205–11.
13.Zeng ZB. Theoretical basis for separation of multiple linked
gene effects in mapping quantitative trait loci. Proc Natl Acad
Sci USA 1993;90(23):10972–6.
14.Kao CH, Zeng ZB, Teasdale RD. Multiple interval mapping for
quantitative trait loci. Genetics 1999;152(3):1203–16.
15.Li H, Ye G, Wang J. A modified algorithm for the improvement
of composite interval mapping. Genetics 2007;175(1):
361–74.
16.Zhang L, Li H, Li Z, et al. Interactions between markers can be
caused by the dominance effect of quantitative trait loci.
Genetics 2008;180(2):1177–90.
17. Yi N, George V, Allison DB. Stochastic search variable selection
for mapping multiple quantitative trait loci. Genetics
2003;164(3):1129–38.
18.Xu S. Estimating polygenic effects using markers of the entire
genome. Genetics 2003;163(2):789–801.
19.Xu S. An empirical Bayes method for estimating epistatic
effects of quantitative trait loci. Biometrics 2007;63(2):513–21.
20.Zhang YM, Xu S. A penalized maximum likelihood method
for estimating epistatic effects of QTL. Heredity 2005;95(1):
96–104.
21.Hoggart CJ, Whittaker JC, De Iorio M, Balding DJ.
Simultaneous analysis of all SNPs in genome-wide and resequencing
association studies. PLoS Genet 2008;4(7):
e1000130.
22. Tibshirani R. Regression shrinkage and selection via the
lasso. J Royal Statist Soc Ser B 1996;58(1):267–88.
23.Fan J, Li R. Variable selection via nonconcave penalized likelihood
and its oracle properties. J Am Stat Assoc 2001;96(456):
1348–60.
24.Xu S. An expectation-maximization algorithm for the Lasso
estimation of quantitative trait locus effects. Heredity 2010;
105(5):483–94.
25.Bernardo R. Genome wide markers as cofactors for precision
mapping of quantitative trait loci. Theor Appl Genet 2013;
126(4):999–1009.
26.Xu S. Mapping quantitative trait loci by controlling polygenic
background effects. Genetics 2013;195(4):1209–22.
27.Wang S-B, Wen Y-J, Ren W-L, et al. Mapping small-effect and
linked quantitative trait loci for complex traits in backcross
or DH populations via a multi-locus GWAS methodology. Sci
Rep 2016;6:29951.
28.Goddard ME, Wray NR, Verbyla K, et al. Estimating effects and
making predictions from genome-wide marker data. Stat Sci
2009;24(4):517–29.
29.Wang SB, Feng JY, Ren WL, et al. Improving power and accuracy
of genome-wide association studies via a multi-locus
mixed linear model methodology. Sci Rep 2016;6:19444.
30.Zhang Z, Ersoz E, Lai CQ, et al. Mixed linear model approach
adapted for genome-wide association studies. Nat Genet 2010;
42(4):355–60.
31.Wen YJ, Zhang H, Ni YL, et al. Methodological implementation
of mixed linear models in multi-locus genome-wide association
studies. Brief Bioinform 2017, DOI: 10.1093/bib/bbw145.
32.Zhou G, Chen Y, Yao W, et al. Genetic composition of yield
heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 2012;
109(39):15847–52.
33.Fan C, Xing Y, Mao H, et al. GS3, a major QTL for grain length
and weight and minor QTL for grain width and thickness in
rice, encodes a putative transmembrane protein. Theor Appl
Genet 2006;112(6):1164–71.
34. Liu J, Chen J, Zheng X, et al. GW5 acts in the brassinosteroid
signalling pathway to regulate grain width and weight in rice.
Nat Plants 2017;3:17043.
35.Xue W, Xing Y, Weng X, et al. Natural variation in Ghd7 is an
important regulator of heading date and yield potential in
rice. Nat Genet 2008;40(6):761–7.
36.Ramegowda V, Basu S, Krishnan A, et al. Rice GROWTH UNDER
DROUGHT KINASE is required for drought tolerance and grain
yield under normal and drought stress conditions. Plant
Physiol 2014;166(3):1634–45.
37.Ashikari M, Sakakibara H, Lin S, et al. Cytokinin oxidase
regulates rice grain production. Science 2005;309(5735):
741–5.
38.Zou X, Qin Z, Zhang C, et al. Over-expression of an S-domain
receptor-like kinase extracellular domain improves panicle
architecture and grain yield in rice. J Exp Bot 2015;66(22):
7197–209.
39.Huo X,Wu S, Zhu Z, et al. NOG1 increases grain production in
rice. Nat Commun 2017;8(1):1497.
40.Song XJ, Huang W, Shi M, et al. A QTL for rice grain width and
weight encodes a previously unknown RING-type E3 ubiquitin
ligase. Nat Genet 2007;39(5):623–30.
41. Li X, Sun L, Tan L, et al. TH1, a DUF640 domain-like gene controls
lemma and palea development in rice. Plant Mol Biol
2012;78(4–5):351–9.
42.Wang E, Wang J, Zhu X, et al. Control of rice grain-filling and
yield by a gene with a potential signature of domestication.
Nat Genet 2008;40(11):1370–4.
43. Ishikawa S, Maekawa M, Arite T, et al. Suppression of tiller
bud activity in tillering dwarf mutants of rice. Plant Cell Physiol
2005;46(1):79–86.
44.Song XJ, Kuroha T, Ayano M, et al. Rare allele of a previously
unidentified histone H4 acetyltransferase enhances grain
weight, yield, and plant biomass in rice. Proc Natl Acad Sci USA
2015;112(1):76–81.
45.Ikeda-Kawakatsu K, Maekawa M, Izawa T, et al. Aberrant
Panicle Organization 2/RFL, the rice ortholog of Arabidopsis
LEAFY, suppresses the transition from inflorescence meristem
to floral meristem through interaction with APO1. Plant
J 2012;69(1):168–80.
46.Tan L, Li X, Liu F, et al. Control of a key transition from prostrate
to erect growth in rice domestication. Nat Genet 2008;
40(11):1360–4.
47.Zhao L, Tan L, Zhu Z, et al. PAY1 improves plant architecture
and enhances grain yield in rice. Plant J 2015;83(3):
528–36.
48.Wang L, Xu Y, Zhang C, et al. OsLIC, a novel CCCH-type zinc
finger protein with transcription activation, mediates rice
architecture via brassinosteroids signaling. PLoS One 2008;
3(10):e3521.
49.Yu B, Lin Z, Li H, et al. TAC1, a major quantitative trait locus
controlling tiller angle in rice. Plant J 2007;52(5):891–8.
50. Jiao Y, Wang Y, Xue D, et al. Regulation of OsSPL14 by
OsmiR156 defines ideal plant architecture in rice. Nat Genet
2010;42(6):541–4.
51.Wang H, Zhang YM, Li X, et al. Bayesian shrinkage estimation of
quantitative trait loci parameters. Genetics 2005;170(1):465–80.
52.Broman KW, Sen S. A Guide to QTL Mapping with R/Qtl. New
York, NY: Springer Science þ Business Media, LLC, 2009.
53.Yu H, Xie W, Wang J, et al. Gains in QTL detection using an
ultra-high density SNP map based on population sequencing
relative to traditional RFLP/SSR markers. PLoS One 2011;6(3):
e17595.
54.Wei J, Xu S. A random-model approach to QTL mapping in
multiparent advanced generation intercross (MAGIC) populations.
Genetics 2016;202(2):471–86.
55.Zou H. The adaptive lasso and its oracle properties. J Am
Statist Assoc 2006;101(476):1418–29.
56.Kra¨mer N, Scha¨ fer J, Boulesteix AL. Regularized estimation of
large-scale gene regulatory networks using Gaussian graphical
models. BMC Bioinformatics 2009;10(1):384.