Accessibility navigation


The eigenvalues of tridiagonal sign matrices are dense in the spectra of periodic tridiagonal sign operators

Hagger, R. (2015) The eigenvalues of tridiagonal sign matrices are dense in the spectra of periodic tridiagonal sign operators. Journal of Functional Analysis, 269 (5). pp. 1563-1570. ISSN 0022-1236

[img]
Preview
Text - Accepted Version
· Available under License Creative Commons Attribution Non-commercial No Derivatives.
· Please see our End User Agreement before downloading.

498kB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.jfa.2015.01.019

Abstract/Summary

Chandler-Wilde, Chonchaiya and Lindner conjectured that the set of eigenvalues of finite tridiagonal sign matrices ($\pm 1$ on the first sub- and superdiagonal, $0$ everywhere else) is dense in the set of spectra of periodic tridiagonal sign operators on $\ell^2(\mathbb{Z})$. We give a simple proof of this conjecture. As a consequence we get that the set of eigenvalues of tridiagonal sign matrices is dense in the unit disk. In fact, a recent paper further improves this result, showing that this set of eigenvalues is dense in an even larger set.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
ID Code:84019
Publisher:Elsevier

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation