Toeplitz quantization on Fock spaceBauer, W., Coburn, L. A. and Hagger, R. (2018) Toeplitz quantization on Fock space. Journal of Functional Analysis, 274 (12). pp. 3531-3551. ISSN 0022-1236
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1016/j.jfa.2018.01.001 Abstract/SummaryFor Toeplitz operators $T_f^{(t)}$ acting on the weighted Fock space $H_t^2$, we consider the semi-commutator $T_f^{(t)}T_g^{(t)} - T_{fg}^{(t)}$, where $t > 0$ is a certain weight parameter that may be interpreted as Planck's constant $\hbar$ in Rieffel's deformation quantization. In particular, we are interested in the semi-classical limit \begin{equation}\tag{$*$} \lim\limits_{t \to 0} \|T_f^{(t)}T_g^{(t)} - T_{fg}^{(t)}\|_t. \end{equation} It is well-known that $\|T_f^{(t)}T_g^{(t)} - T_{fg}^{(t)}\|_t$ tends to $0$ under certain smoothness assumptions imposed on $f$ and $g$. This result was recently extended to $f,g \in \textup{BUC}(\C^n)$ by Bauer and Coburn. We now further generalize $(*)$ to (not necessarily bounded) uniformly continuous functions and symbols in the algebra $\textup{VMO}\cap L^{\infty}$ of bounded functions having vanishing mean oscillation on $\mathbb{C}^n$. Our approach is based on the algebraic identity $T_f^{(t)}T_g^{(t)} - T_{fg}^{(t)} = -(H_{\bar{f}}^{(t)})^*H_g^{(t)}$, where $H_g^{(t)}$ denotes the Hankel operator corresponding to the symbol $g$, and norm estimates in terms of the (weighted) heat transform. As a consequence, only $f$ (or likewise only $g$) has to be contained in one of the above classes for $(*)$ to vanish. For $g$ we only have to impose $\limsup_{t \to 0} \|H_g^{(t)}\|_t < \infty$, e.g.~$g \in L^{\infty}(\C^n)$. We prove that the set of all symbols $f\in L^{\infty} (\mathbb{C}^n)$ with the property that $\lim_{t \rightarrow 0}\|T^{(t)}_fT^{(t)}_g-T^{(t)}_{fg}\|_t= \lim_{t \rightarrow 0} \| T_g^{(t)}T_f^{(t)}-T_{gf}^{(t)}\|_t=0$ for all $g\in L^{\infty}(\mathbb{C}^n)$ coincides with $\textup{VMO}\cap L^{\infty}$. Additionally, we show that $\lim\limits_{t \to 0} \|T_f^{(t)}\|_t = \|f\|_{\infty}$ holds for all $f \in L^{\infty}(\C^n)$. Finally, we present new examples, including bounded smooth functions, where $(*)$ does not vanish.
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |