Water pathways for the Hindu-Kush-Himalaya and analysis of three flood eventsBoschi, R. and Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471 (2019) Water pathways for the Hindu-Kush-Himalaya and analysis of three flood events. Atmosphere, 10 (9). 489. ISSN 2073-4433
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.3390/atmos10090489 Abstract/SummaryThe climatology of major sources and pathways of moisture for three locales along the Hindu-Kush-Himalayan region are examined, by use of Lagrangian methods applied to the ERA-Interim dataset, over the period from 1980 to 2016 for both summer (JJA) and winter (NDJ) periods. We also investigate the major flooding events of 2010, 2013, and 2017 in Pakistan, Uttarakhand, and Kathmandu, respectively, and analyse a subset of the climatology associated with the 20 most significant rainfall events over each region of interest. A comparison is made between the climatology and extreme events, in the three regions of interest, during the summer monsoon period. For Northern Pakistan and Uttarakhand, the Indus basin plays the largest role in moisture uptake. Moisture is also gathered from Eastern Europe and Russia. Extreme events display an increased influence of sub-tropical weather systems, which manifest themselves through low-level moisture transport; predominantly from the Arabian sea and along the Gangetic plain. In the Kathmandu region, it is found that the major moisture sources come from the Gangetic plain, Arabian Sea, Red Sea, Bay of Bengal, and the Indus basin. In this case, extreme event pathways largely match those of the climatology, although an increased number of parcels originate from the western end of the Gangetic plain. These results provide insights into the rather significant influence of mid-latitudinal weather systems, even during the monsoon season, in defining the climatology of the Hindu-Kush-Himalaya region, as well as how extreme precipitation events in this region represent atypical moisture pathways. We propose a detailed investigation of how such water pathways are represented in climate models for the present climate conditions and in future climate scenarios, as this may be extremely relevant for understanding the impacts of climate change on the cryosphere and hydrosphere of the region.
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |