Enhancing identification accuracy for powdery mildews using previously underexploited DNA lociEllingham, O., David, J. and Culham, A. ORCID: https://orcid.org/0000-0002-7440-0133 (2019) Enhancing identification accuracy for powdery mildews using previously underexploited DNA loci. Mycologia, 111 (5). pp. 798-812. ISSN 0027-5514
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1080/00275514.2019.1643644 Abstract/SummaryThe internal transcribed spacer (ITS) DNA marker is routinely used for fungal identification but gives a clear result for only three out of four powdery mildew samples. A search for new markers indicates that some genes offer enhanced identification in comparison with ITS. Others fail due to amplification and sequencing difficulties and lack of informative variability. Powdery mildews (Ascomycota, Erysiphales) are biotrophic, fungal plant pathogens that commonly occur worldwide on a wide range of host plants. They are unsightly and greatly reduce the vigor of their hosts and have major impacts on crop and other cultivated plants. Species within this order are straightforward to spot, but difficult to identify. A citizen science scheme was run in 2013–2016 in the UK to gather a wide array of samples on which identification methods could be developed. Current techniques for identification and phylogenetic reconstruction show scope for improvement. In this paper, we review genes used in other fungal groups for discrimination at species level. Working protocols for amplification and sequencing of seven genes (actin, β-tubulin, calmodulin,Chs, elongation factor 1-α [EF1-α], Mcm7, and Tsr1) are developed with varying success; Mcm7 proves to be the most useful at differentiation between closely related, phylogenetically young powdery mildew species for phylogenetic reconstruction when used separately and in tandem with ITS. We therefore propose this as the most appropriate candidate gene to be used commonly in powdery mildew diagnostics alongside the ITS; furthermore, this could be transferred to similarly troublesome fungal clades.
DownloadsDownloads per month over past year
Aguileta G, Marthey S, Chiapello H, Lebrun M-H, Rodolphe F, Fournier E, Gendrault-Jacquemard A, Giraud T. 2008. Assessing the performance of single-copy genes for recovering robust phylogenies. Systematic Biology 57:613–627.
Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19:716–723.
Altschul SF, Gish, W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology 215:403–410.
Álvarez B, Torés A. 1997. Cultivo in vitro de Sphaerotheca fuliginea (Schlecht. ex Fr.), efecto de diferentes fuentes de carbono sobre su desarrollo. Boletín de Sanidad Vegetal Plagas 23:283–288.
Amatulli MT, Spadaro D, Gullino ML, Garibaldi A. 2010. Molecular identification of Fusarium spp. associated with bakanae disease of rice in Italy and assessment of their pathogenicity. Plant Pathology 59:839–844.
Amrani L, Corio-Costet MF. 2006. A single nucleotide polymorphism in the β-tubulin gene distinguishing two genotypes of Erysiphe necator expressing different symptoms on grapevine. Plant Pathology 55:505–512.
Baldauf SL, Roger A, Wenk-Siefert I, Doolittle WF. 2000. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977.
Beltrán M, Jiggins CD, Bull V, Linares M, Mallet J, McMillan WO, Bermingham E. 2002. Phylogenetic discordance at the species boundary: comparative gene genealogies among rapidly radiating Heliconius butterflies. Molecular Biology and Evolution 19:2176–2190.
Berendsen RL, Pieterse CM, Bakker PA. 2012. The rhizosphere microbiome and plant health. Trends in Plant Science 17:478–486.
Braun U, Cook RT. 2012. Taxonomic manual of the Erysiphales (powdery mildews). Utrecht, The Netherlands: CBS-KNAW Fungal Biodiversity Centre. 707 p.
Braun U. 1987. A monograph of the Erysiphales (powdery mildews). Beihefte zur Nova Hedwigia 89. Weinheim, Germany. 700 p.
Brewer MT, Milgroom MG. 2010. Phylogeography and population structure of the grape powdery mildew fungus, Erysiphe necator, from diverse Vitis species. BMC Evolutionary Biology 10:268.
Carter DJ, Cary RB. 2007. Lateral flow microarrays: a novel platform for rapid nucleic acid detection based on miniaturized lateral flow chromatography. Nucleic Acids Research 35:e74.
Choi H-K, Luckow MA, Doyle J, Cook DR. 2006. Development of nuclear gene-derived molecular markers linked to legume genetic maps. Molecular Genetics and Genomics 276:56–70.
Colless D. 1980. Congruence between morphometric and allozyme data for Menidia species: a reappraisal. Systematic Zoology 29:288–299.
Cook RTA, Henricot B, Henrici A, Beales P. 2006. Morphological and phylogenetic comparisons amongst powdery mildews on Catalpa in the UK. Mycological Research 110:672–685.
Cunnington JH, Takamatsu S, Lawrie AC, Pascoe IG. 2003. Molecular identification of anamorphic powdery mildews (Erysiphales). Australasian Plant Pathology 32:421–428.
Curto MA, Puppo P, Ferreira D, Nogueira M, Meimberg H. 2012. Development of phylogenetic markers from single-copy nuclear genes for multi locus, species level analyses in the mint family (Lamiaceae). Molecular Phylogenetics and Evolution 63:758–767.
Daniel H-M, Meyer W. 2003. Evaluation of ribosomal RNA and actin gene sequences for the identification of ascomycetous yeasts. International Journal of Food Microbiology 86:61–78.
Daniel H-M, Sorrell TC, Meyer W. 2001. Partial sequence analysis of the actin gene and its potential for studying the phylogeny of Candida species and their teleomorphs. International Journal of Systematic and Evolutionary Microbiology 51:1593–1606.
de Jong SN, Lévesque CA, Verkley GJ, Abeln EC, Rahe JE, Braun PG. 2001. Phylogenetic relationships among Neofabraea species causing tree cankers and bull’s-eye rot of apple based on DNA sequencing of ITS nuclear rDNA, mitochondrial rDNA, and the β-tubulin gene. Mycological Research 105:658–669.
Debono M, Gordee RS. 1994. Antibiotics that inhibit fungal cell wall development. Annual Reviews in Microbiology 48:471–497.
Divakar PK, Del-Prado R, Lumbsch HT, Wedin M, Esslinger TL, Leavitt SD, Crespo A. 2012. Diversification of the newly recognized lichen-forming fungal lineage Montanelia (Parmeliaceae, Ascomycota) and its relation to key geological and climatic events. American Journal of Botany 99:2014–2026.
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792–1797.
Einax E, Voigt K. 2003. Oligonucleotide primers for the universal amplification of β-tubulin genes facilitate phylogenetic analyses in the regnum Fungi. Organisms Diversity and Evolution 3:185–194.
Eisenstein M. 2012. Oxford Nanopore announcement sets sequencing sector abuzz. Nature Research 295.
Ellingham O, Denton G, Denton J, Robinson R. 2016. First report of Podosphaera macrospora on Heuchera in the United Kingdom. New Disease Reports 33. 23 p.
Ellingham O. 2017. Increasing accuracy of powdery mildew (Ascomycota, Erysiphales) identification using previously untapped DNA regions [PhD dissertation]. Reading, UK: University of Reading. 283 p.
Faoro F, Maffi D, Cantu D, Iriti M. 2008. Chemical-induced resistance against powdery mildew in barley: the effects of chitosan and benzothiadiazole. Biocontrol 53:387–401.
Fonseca NR, Guimarães LM, Pires RP, Klopfenstein NB, Alfenas AC. 2017. Eucalypt powdery mildew caused by Podosphaera pannosa in Brazil. Tropical Plant Pathology 42:261–272.
Franco FP, Moura DS, Vivanco JM, Silva-Filho MC. 2017. Plant-insect-pathogen interactions: a naturally complex ménage à trois. Current Opinions in Microbiology 37:54–60.
Frye CA, Innes RW. 1998. An Arabidopsis mutant with enhanced resistance to powdery mildew. The Plant Cell 10:947–956.
Gelperin D, Horton L, Beckman J, Hensold J, Lemmon SK. 2001. Bms1p, a novel GTP-binding protein, and the related Tsr1p are required for distinct steps of 40S ribosome biogenesis in yeast. RNA 7:1268–1283.
Heluta V, Takamatsu S, Harada M, Voytyuk S. 2010. Molecular phylogeny and taxonomy of Eurasian Neoerysiphe species infecting Asteraceae and Geranium. Persoonia 24:81–92.
Horst R, Kawamoto S, Porter L. 1992. Effect of sodium bicarbonate and oils on the control of powdery mildew and black spot of roses. Plant Disease 76:247–251.
Hunter GC, Wingfield BD, Crous PW, Wingfield MJ. 2006. A multi-gene phylogeny for species of Mycosphaerella occurring on Eucalyptus leaves. Studies in Mycology 55:147–161.
Inuma T, Khodaparast SA, Takamatsu S. 2007. Multilocus phylogenetic analyses within Blumeria graminis, a powdery mildew fungus of cereals. Molecular Phylogenetics and Evolution 44:741–751.
Jones L, Riaz S, Morales-Cruz A, Amrine KC, McGuire B, Gubler WD, Walker MA, Cantu D. 2014. Adaptive genomic structural variation in the grape powdery mildew pathogen, Erysiphe necator. BMC Genomics 15:1081.
Jørgensen JH. 1992. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63:141–152.
Juuti JT, Jokela S, Tarkka MT, Paulin L, Lahdensalo J. 2005. Two phylogenetically highly distinct β-tubulin genes of the basidiomycete Suillus bovinus. Current Genetics 47:253–263.
Kabaktepe S, Akata I, Siahaan SAS, Takamatsu S, Braun U. 2017. Powdery mildews (Ascomycota, Erysiphales) on Fontanesia phillyreoides and Jasminum fruticans in Turkey. Mycoscience 58:30–34.
Kano R, Nakamura Y, Watari T, Watanabe S, Takahashi H, Tsujimoto H, Hasegawa A. 1997. Phylogenetic analysis of 8 dermatophyte species using chitin synthase 1 gene sequences. Mycoses 40:411–414.
Kearsey SE, Labib K. 1998. MCM proteins: evolution, properties, and role in DNA replication. Biochimica et Biophysica Acta Gene Structure and Expression 1398:113–136.
Kenyon DM, Dixon GR, Helfer S. 1995. Culture in-vitro of Rhododendron and Erysiphe sp. Plant Pathology 44:350–354.
Khodaparast SA, Takamatsu S, Hedjaroude G-A. 2001. Phylogenetic structure of the genus Leveillula (Erysiphales: Erysiphaceae) inferred from the nucleotide sequences of the rDNA ITS region with special reference to the L. taurica species complex. Mycological Research 105:909–918.
Kong L-A, Yang J, Li G-T, Qi L-L, Zhang Y-J, Wang C-F, Zhao W-S, Xu J-R, Peng Y-L. 2012. Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae. PLoS Pathogens 8:e1002526.
Kovács GM, Jankovics T, Kiss L. 2011. Variation in the nrDNA ITS sequences of some powdery mildew Kong L-A, Yang J, Li G-T, Qi L-L, Zhang Y-J, Wang C-F, Zhao W-S, Xu J-R, Peng Y-L. 2012. Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae. PLoS Pathogens 8:e1002526.
Kovács GM, Jankovics T, Kiss L. 2011. Variation in the nrDNA ITS sequences of some powdery mildew species: do routine molecular identification procedures hide valuable information? European Journal of Plant Pathology 131:135–141.
Kristensen R, Torp M, Kosiak B, Holst-Jensen A. 2005. Phylogeny and toxigenic potential is correlated in Fusarium species as revealed by partial translation elongation factor 1 alpha gene sequences. Mycological Research 109:173–186.
Leavitt SD, Johnson L, Clair LLS. 2011. Species delimitation and evolution in morphologically and chemically diverse communities of the lichen-forming genus Xanthoparmelia (Parmeliaceae, Ascomycota) in western North America. American Journal of Botany 98:175–188.
Liu Z, Sun Q, Ni Z, Yang T, McIntosh R. 1999. Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breeding 118:215–219.
Maddison WP, Maddison DR. 2017. Mesquite: a modular system for evolutionary analysis.
Madrid H, Cano J, Gené J, Bonifaz A, Toriello C, Guarro J. 2009. Sporothrix globosa, a pathogenic fungus with widespread geographical distribution. Revista Iberoamericana de Micologia 26:218–222.
Maphosa L, Wingfield B, Coetzee M, Mwenje E, Wingfield M. 2006. Phylogenetic relationships among Armillaria species inferred from partial elongation factor 1-alpha DNA sequence data. Australasian Plant Pathology 35:513–520.
Matheny PB, Wang Z, Binder M, Curtis JM, Lim YW, Nilsson RH, Hughes KW, Hofstetter V, Ammirati JF, Schoch CL. 2007. Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Molecular Phylogenetics and Evolution 43:430–451.
Max Planck Institute for Plant Breeding Research. 2015. Powdery Mildew Genome Project. [cited 2015 Jun 12]. Available from: http://www.mpipz.mpg.de/powdery_mildew_project_description
McElroy D, Zhang W, Cao J, Wu R. 1990. Isolation of an efficient actin promoter for use in rice transformation. The Plant Cell Online 2:163–171.
McKean PG, Vaughan S, Gull K. 2001. The extended tubulin superfamily. Journal of Cell Science 114:2723–2733.
Meeboon J, Siahaan SAS, Takamatsu S. 2015. Notes on powdery mildews (Erysiphales) in Japan: IV. Phyllactinia, Parauncinula and Sawadaea. Mycoscience 56:590–596.
Meeboon J, Takamatsu S. 2015a. Notes on powdery mildews (Erysiphales) in Japan: I. Erysiphe sect. Erysiphe. Mycoscience 56:257–266.
Meeboon J, Takamatsu S. 2015b. Notes on powdery mildews (Erysiphales) in Japan: II. Erysiphe sect. Microsphaera. Mycoscience 56:230–236.
Meeboon J, Takamatsu S. 2015c. Notes on powdery mildews (Erysiphales) in Japan: III. Golovinomyces and Podosphaera. Mycoscience 56:243–251.
Mikheyev AS, Tin MM. 2014. A first look at the Oxford Nanopore MinION sequencer. Molecular Ecology Resources 14:1097–1102.
Minnis AM, Lindner DL. 2013. Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biology 117:638–649.
Mitsuhashi S, Kryukov K, Nakagawa S, Takeuchi JS, Shiraishi Y, Asano K, Imanishi T. 2017. A portable system for metagenomic analyses using nanopore-based sequencer and laptop computers can realize rapid on-site determination of bacterial compositions. BioRxiv:101865.
Moir D, Stewart SE, Osmond BC, Botstein D. 1982. Cold-sensitive cell-division-cycle mutants of yeast: isolation, properties, and pseudoreversion studies. Genetics 100:547–563.
Morgenstern I, Powlowski J, Ishmael N, Darmond C, Marqueteau S, Moisan M-C, Quenneville G, Tsang A. 2012. A molecular phylogeny of thermophilic fungi. Fungal Biology 116:489–502.
Morrison RM. 1960. Studies of clonal isolates of Erysiphe cichoracearum on leaf disk culture. Mycologia 52:388–393.
Mulè G, Susca A, Stea G, Moretti A. 2004. Specific detection of the toxigenic species Fusarium proliferatum and F. oxysporum from asparagus plants using primers based on calmodulin gene sequences. FEMS Microbiology Letters 230:235–240.
Nicot PC, Bardin M, Dik AJ. 2002. Basic methods for epidemiological studies of powdery mildews: culture and preservation of isolates, production and delivery of inoculum, and disease assessment. In: Belanger RR, Bushnell WR, Dik AJ, Carver TL, eds. The powdery mildews: a comprehensive treatise. St. Paul, USA: American Phytopathological Society (APS) Press. p. 83–99.
Nylander J. 2004. MrModeltest. Version 2. Uppsala, Sweden: Evolutionary Biology Centre, Uppsala University.
O’Donnell K, Cigelnik E, Casper H. 1998a. Molecular phylogenetic, morphological, and mycotoxin data support reidentification of the quorn mycoprotein fungus as Fusarium venenatum. Fungal Genetics and Biology 23:57–67.
O’Donnell K, Cigelnik E, Nirenberg HI. 1998b. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90:465–493.
O’Donnell K, Nirenberg HI, Aoki T, Cigelnik E. 2000. A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience 41:61–78.
Opalski KS, Schultheiss H, Kogel KH, Hückelhoven R. 2005. The receptor‐like MLO protein and the RAC/ROP family G‐protein RACB modulate actin reorganization in barley attacked by the biotrophic powdery mildew fungus Blumeria graminis f. sp. hordei. The Plant Journal 41:291–303.
Pintye A, Ropars J, Harvey N, Shin H-D, Leyronas C, Nicot PC, Giraud T, Kiss L. 2015. Host phenology and geography as drivers of differentiation in generalist fungal mycoparasites. PloS ONE 10:e0120703.
Pirondi A, Vela-Corcía D, Dondini L, Brunelli A, Pérez-García A, Collina M. 2015. Genetic diversity analysis of the cucurbit powdery mildew fungus Podosphaera xanthii suggests a clonal population structure. Fungal Biology 119:791–801.
Poland J, Clement EJ. 2009. Vegetative key to the British Flora. Botanical Society of the British Isles, Oxford University Press. 584 p.
Prieto M, Wedin M. 2016. Phylogeny, taxonomy and diversification events in the Caliciaceae. Fungal Diversity 82:1–18.
Raja H, Schoch CL, Hustad V, Shearer C, Miller A. 2011. Testing the phylogenetic utility of MCM7 in the Ascomycota. MycoKeys 1:63.
Rambaut A, Suchard MA, Xie D, Drummond AJ. 2015. Tracer v1.6. Available from: http://beast.bio.ed.ac.uk/Tracer
Reeb V, Lutzoni F, Roux C. 2004. Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Molecular Phylogenetics and Evolution 32:1036–1060.
Reece KS, McElroy D, Wu R. 1992. Function and evolution of actins. In: Hecht MK, Wallace B, Macintyre RJ, eds. Evolutionary biology. Volume 6. Boston, MA: Springer. p. 1–34.
Roberts DM, Lukas TJ, Watterson DM, Roux SJ. 1986. Structure, function, and mechanism of action of calmodulin. Critical Reviews in Plant Sciences 4:311–339.
Roger AJ, Sandblom O, Doolittle WF, Philippe H. 1999. An evaluation of elongation factor 1 alpha as a phylogenetic marker for eukaryotes. Molecular Biology and Evolution 16:218–233.
Romeo O, Scordino F, Criseo G. 2011. New insight into molecular phylogeny and epidemiology of Sporothrix schenckii species complex based on calmodulin-encoding gene analysis of Italian isolates. Mycopathologia 172:179–186.
Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.
Sadowska-Deś AD, Bálint M, Otte J, Schmitt I. 2013. Assessing intraspecific diversity in a lichen-forming fungus and its green algal symbiont: evaluation of eight molecular markers. Fungal Ecology 6:141–151.
Samson RA, Visagie CM, Houbraken J, Hong S-B, Hubka V, Klaassen CH, Perrone G, Seifert KA, Susca A, Tanney JB. 2014. Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in Mycology 78:141–173.
Sang T. 2002. Utility of low-copy nuclear gene sequences in plant phylogenetics. Critical Reviews in Biochemistry and Molecular Biology 37:121–147.
Schmitt I, Crespo A, Divakar P, Fankhauser J, Herman-Sackett E, Kalb K, Nelsen M, Nelson N, Rivas-Plata E, Shimp A. 2009. New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23:35–40.
Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America 109:6241–6246.
Seehausen O, Koetsier E, Schneider MV, Chapman LJ, Chapman CA, Knight ME, Turner GF, Van Alphen JJ, Bills R. 2003. Nuclear markers reveal unexpected genetic variation and a Congolese-Nilotic origin of the Lake Victoria cichlid species flock. Proceedings of the Royal Society of London B: Biological Sciences 270:129–137.
Seifert KA, Lévesque CA. 2004. Phylogeny and molecular diagnosis of mycotoxigenic fungi. In: Mulè G, Bailey JA, Cooke BM, Logrieco A, eds. Molecular diversity and PCR-detection of toxigenic Fusarium species and ochratoxigenic fungi. Dordrecht, Netherlands: Springer. p. 449–471.
Small RL, Cronn RC, Wendel JF. 2004. LAS Johnson Review No. 2. Use of nuclear genes for phylogeny reconstruction in plants. Australian Systematic Botany 17:145–170.
Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stüber K, Van Themaat EVL, Brown JK, Butcher SA, Gurr SJ. 2010. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330:1543–1546.
Stevens FC. 1983. Calmodulin: an introduction. Canadian Journal of Biochemistry and Cell Biology 61:906–910.
Swofford DL. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
Takamatsu S, Havrylenko M, Wolcan SM, Matsuda S, Niinomi S. 2008a. Molecular phylogeny and evolution of the genus Neoerysiphe (Erysiphaceae, Ascomycota). Mycological Research 112:639–649.
Takamatsu S, Hirata T, Sato Y. 1998. Phylogenetic analysis and predicted secondary structures of the rDNA internal transcribed spacers of the powdery mildew fungi (Erysiphaceae). Mycoscience 39:441–453.
Takamatsu S, Inagaki M, Niinomi S, Khodaparast SA, Shin H-D, Grigaliunaite B, Havrylenko M. 2008b. Comprehensive molecular phylogenetic analysis and evolution of the genus Phyllactinia (Ascomycota: Erysiphales) and its allied genera. Mycological Research 112:299–315.
Takamatsu S, Ito H, Shiroya Y, Kiss L, Heluta V. 2015. First comprehensive phylogenetic analysis of the genus Erysiphe (Erysiphales, Erysiphaceae) I. The Microsphaera lineage. Mycologia 107:475–489.
Takamatsu S. 2013. Origin and evolution of the powdery mildews (Ascomycota, Erysiphales). Mycoscience 54:75–86.
Tang S, Jiang W, Qiu P, Fu X, Li Y, Wang L, Liu S. 2017. Podosphaera paracurvispora (Erysiphaceae, Ascomycota), a new powdery mildew species on Pyrus from China. Mycoscience 58:116–120.
Topalidou ET, Shaw MW. 2016. Relationships between Oak powdery mildew incidence and severity and commensal fungi. Forest Pathology 46:104–115.
Tretter ED, Johnson E, Wang Y, Kandel P, White MM. 2013. Examining new phylogenetic markers to uncover the evolutionary history of early-diverging fungi: comparing MCM7, TSR1 and rRNA genes for single-and multi-gene analyses of the Kickxellomycotina. Persoonia: Molecular Phylogeny and Evolution of Fungi 30:106–125.
Tretter ED, Johnson EM, Benny GL, Lichtwardt RW, Wang Y, Kandel P, Novak SJ, Smith JF, White MM. 2014. An eight-gene molecular phylogeny of the Kickxellomycotina, including the first phylogenetic placement of Asellariales. Mycologia 106:912–935.
Troch V, Audenaert K, Wyand RA, Haesaert G, Höfte M, Brown JK. 2014. Formae speciales of cereal powdery mildew: close or distant relatives? Molecular Plant Pathology 15:304–314.
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. 2012. Primer3-new capabilities and interfaces. Nucleic Acids Research 40:e115–e115.
Vela-Corcía D, Bellón-Gómez D, López-Ruiz F, Torés JA, Pérez-García A. 2014. The Podosphaera fusca TUB2 gene, a molecular “Swiss Army knife” with multiple applications in powdery mildew research. Fungal Biology 118:228–241.
Voigt K, Wöstemeyer J. 2000. Reliable amplification of actin genes facilitates deep-level phylogeny. Microbiological Research 155:179–195
Voigt K, Wöstemeyer J. 2001. Phylogeny and origin of 82 zygomycetes from all 54 genera of the Mucorales and Mortierellales based on combined analysis of actin and translation elongation factor EF-1α genes. Gene 270:113–120.
Wang L, Zhuang W-Y. 2007. Phylogenetic analyses of penicillia based on partial calmodulin gene sequences. Biosystems 88:113–126.
Wang X-Z, Xu B-Y, Ping W, Luan F-S, Ma H-Y, Ma Y-Y. 2013. Identification of powdery mildew pathogen and ribosomal DNA-ITS sequence analysis on melon. Journal of Northeast Agricultural University (English Edition) 20:10–18.
Weiland JJ, Sundsbak JL. 2000. Differentiation and detection of sugar beet fungal pathogens using PCR amplification of actin coding sequences and the ITS region of the rRNA gene. Plant Disease 84:475–482.
Werle E, Schneider C, Renner M, Völker M, Fiehn W. 1994. Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Research 22:4354–4355.
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR protocols: a guide to methods and applications. 18:315–322.
Wicker T, Oberhaensli S, Parlange F, Buchmann JP, Shatalina M, Roffler S, Ben-David R, Doležel J, Šimková H, Schulze-Lefert P. 2013. The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nature Genetics 45:1092–1096.
Xiao C, Chandler C, Price J, Duval J, Mertely J, Legard D. 2001. Comparison of epidemics of Botrytis fruit rot and powdery mildew of strawberry in large plastic tunnel and field production systems. Plant Disease 85:901–909.
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134.
Yun BW, Atkinson HA, Gaborit C, Greenland A, Read ND, Pallas JA, Loake GJ. 2003. Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non‐host resistance in Arabidopsis against wheat powdery mildew. The Plant Journal 34:768–777.
Zhang Z, Hall A, Perfect E, Gurr SJ. 2000. Differential expression of two Blumeria graminis chitin synthase genes. Molecular Plant Pathology 1:125–138. University Staff: Request a correction | Centaur Editors: Update this record |