[1] R. Garcia-Herrera, J. Díaz, R.M. Trigo, J. Luterbacher, E.M. Fischer, A review of the european summer heat wave of 2003, Crit. Rev. Environ. Sci. Technol. 40 (2010) 267–306. https://doi.org/10.1080/10643380802238137.
[2] IPCC, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014.
[3] A. Gasparrini, B. Armstrong, The impact of heat waves on mortality, Epidemiology. (2011). https://doi.org/10.1097/EDE.0b013e3181fdcd99.
[4] Y. Guo, A. Gasparrini, B.G. Armstrong, et al., Heat wave and mortality: A multicountry, multicommunity study, Environ. Health Perspect. (2017). https://doi.org/10.1289/EHP1026.
[5] E.M. Fischer, R. Knutti, Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes, Nat. Clim. Chang. 5 (2015) 560–564. https://doi.org/10.1038/nclimate2617.
[6] L. Zhao, M. Oppenheimer, Q. Zhu, J.W. Baldwin, K.L. Ebi, E. Bou-Zeid, K. Guan, X. Liu, Interactions between urban heat islands and heat waves, Environ. Res. Lett. 13 (2018) 034003. https://doi.org/10.1088/1748-9326/aa9f73.
[7] C.C. Konijnendijk, K. Nilsson, T.B. Randrup, J. Schipperijn, Urban forests and trees: A reference book, 2005. https://doi.org/10.1007/3-540-27684-X.
[8] R. Upreti, Z.H. Wang, J. Yang, Radiative shading effect of urban trees on cooling the regional built environment, Urban For. Urban Green. 26 (2017) 18–24. https://doi.org/10.1016/j.ufug.2017.05.008.
[9] Z. Zou, Y. Yang, G.Y. Qiu, Quantifying the evapotranspiration rate and its cooling effects of urban hedges based on three-temperature model and infrared remote sensing, Remote Sens. 11 (2019) 1–18. https://doi.org/10.3390/rs11020202.
[10] M. Taleghani, Outdoor thermal comfort by different heat mitigation strategies- A review, Renew. Sustain. Energy Rev. 81 (2018) 2011–2018. https://doi.org/10.1016/j.rser.2017.06.010.
[11] L. Kong, K.K.L. Lau, C. Yuan, Y. Chen, Y. Xu, C. Ren, E. Ng, Regulation of outdoor thermal comfort by trees in Hong Kong, Sustain. Cities Soc. 31 (2017) 12–25. https://doi.org/10.1016/j.scs.2017.01.018.
[12] Z.H. Wang, X. Zhao, J. Yang, J. Song, Cooling and energy saving potentials of shade trees and urban lawns in a desert city, Appl. Energy. 16 (2016) 437–444. https://doi.org/10.1016/j.apenergy.2015.10.047.
[13] S. Gillner, J. Vogt, A. Tharang, S. Dettmann, A. Roloff, Role of street trees in mitigating effects of heat and drought at highly sealed urban sites, Landsc. Urban Plan. 143 (2015) 33–42. https://doi.org/10.1016/j.landurbplan.2015.06.005.
[14] H. Lee, H. Mayer, L. Chen, Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany, Landsc. Urban Plan. 148 (2016) 37–50. https://doi.org/10.1016/j.landurbplan.2015.12.004.
[15] A.S. Yang, Y.H. Juan, C.Y. Wen, C.J. Chang, Numerical simulation of cooling effect of vegetation enhancement in a subtropical urban park, Appl. Energy. 192 (2017) 178–200. https://doi.org/10.1016/j.apenergy.2017.01.079.
[16] D.E. Bowler, L. Buyung-Ali, T.M. Knight, A.S. Pullin, Urban greening to cool towns and cities: A systematic review of the empirical evidence, Landsc. Urban Plan. 97 (2010) 147–155. https://doi.org/10.1016/j.landurbplan.2010.05.006.
[17] W. Zhou, J. Wang, M.L. Cadenasso, Effects of the spatial configuration of trees on urban heat mitigation: A comparative study, Remote Sens. Environ. 195 (2017) 1–12. https://doi.org/10.1016/j.rse.2017.03.043.
[18] S. Sodoudi, H. Zhang, X. Chi, F. Müller, H. Li, The influence of spatial configuration of green areas on microclimate and thermal comfort, Urban For. Urban Green. 34 (2018) 85–96. https://doi.org/10.1016/j.ufug.2018.06.002.
[19] Z. Tan, K.K.L. Lau, E. Ng, Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment, Energy Build. 114 (2016) 265–274. https://doi.org/10.1016/j.enbuild.2015.06.031.
[20] T. Zölch, M.A. Rahman, E. Pfleiderer, G. Wagner, S. Pauleit, Designing public squares with green infrastructure to optimize human thermal comfort, Build. Environ. 149 (2019) 640–654. https://doi.org/10.1016/j.buildenv.2018.12.051.
[21] E. Jamei, P. Rajagopalan, M. Seyedmahmoudian, Y. Jamei, Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort, Renew. Sustain. Energy Rev. 54 (2016) 1002–1017. https://doi.org/10.1016/j.rser.2015.10.104.
[22] Y. Wang, U. Berardi, H. Akbari, Comparing the effects of urban heat island mitigation strategies for Toronto, Canada, Energy Build. 114 (2016) 2–19. https://doi.org/10.1016/j.enbuild.2015.06.046.
[23] Y. Liu, D.J. Harris, Effects of shelterbelt trees on reducing heating-energy consumption of office buildings in Scotland, Appl. Energy. 85 (2008) 115–127. https://doi.org/10.1016/j.apenergy.2007.06.008.
[24] J.L. Moss, K.J. Doick, S. Smith, M. Shahrestani, Influence of evaporative cooling by urban forests on cooling demand in cities, Urban For. Urban Green. 37 (2019) 65–73. https://doi.org/10.1016/j.ufug.2018.07.023.
[25] C.M. Hsieh, J.J. Li, L. Zhang, B. Schwegler, Effects of tree shading and transpiration on building cooling energy use, Energy Build. 159 (2018) 382–397. https://doi.org/10.1016/j.enbuild.2017.10.045.
[26] N. Bréda, V. Badeau, Forest tree responses to extreme drought and some biotic events: Towards a selection according to hazard tolerance?, Comptes Rendus - Geosci. 340 (2008) 651–662. https://doi.org/10.1016/j.crte.2008.08.003.
[27] C. Calfapietra, J. Peñuelas, Ü. Niinemets, Urban plant physiology: Adaptation-mitigation strategies under permanent stress, Trends Plant Sci. 20 (2015) 72–75. https://doi.org/10.1016/j.tplants.2014.11.001.
[28] R. Teskey, T. Wertin, I. Bauweraerts, M. Ameye, M.A. McGuire, K. Steppe, Responses of tree species to heat waves and extreme heat events, Plant Cell Environ. 38 (2015) 1699–1712. https://doi.org/10.1111/pce.12417.
[29] I. Bauweraerts, M. Ameye, T.M. Wertin, M.A. McGuire, R.O. Teskey, K. Steppe, Water availability is the decisive factor for the growth of two tree species in the occurrence of consecutive heat waves, Agric. For. Meteorol. 189–190 (2014) 19–29. https://doi.org/10.1016/j.agrformet.2014.01.001.
[30] S. Leuzinger, R. Vogt, C. Körner, Tree surface temperature in an urban environment, Agric. For. Meteorol. 150 (2010) 56–62. https://doi.org/10.1016/j.agrformet.2009.08.006.
[31] S. Zheng, J.M. Guldmann, Z. Liu, L. Zhao, Influence of trees on the outdoor thermal environment in subtropical areas: An experimental study in Guangzhou, China, Sustain. Cities Soc. 42 (2018) 482–497. https://doi.org/10.1016/j.scs.2018.07.025.
[32] M.A. Irmak, S. Yilmaz, E. Mutlu, H. Yilmaz, Assessment of the effects of different tree species on urban microclimate, Environ. Sci. Pollut. Res. 25 (2018) 15802–15822. https://doi.org/10.1007/s11356-018-1697-8.
[33] C.Y. Park, D.K. Lee, E.S. Krayenhoff, H.K. Heo, S. Ahn, T. Asawa, A. Murakami, H.G. Kim, A multilayer mean radiant temperature model for pedestrians in a street canyon with trees, Build. Environ. 141 (2018) 298–309. https://doi.org/10.1016/j.buildenv.2018.05.058.
[34] C.Y. Park, D.K. Lee, E.S. Krayenhoff, H.K. Heo, J.H. Hyun, K. Oh, T.Y. Park, Variations in pedestrian mean radiant temperature based on the spacing and size of street trees, Sustain. Cities Soc. 48 (2019) 1–9. https://doi.org/10.1016/j.scs.2019.101521.
[35] T. Zölch, J. Maderspacher, C. Wamsler, S. Pauleit, Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale, Urban For. Urban Green. 20 (2016) 305–316. https://doi.org/10.1016/j.ufug.2016.09.011.
[36] T.E. Morakinyo, K.K.L. Lau, C. Ren, E. Ng, Performance of Hong Kong’s common trees species for outdoor temperature regulation, thermal comfort and energy saving, Build. Environ. 137 (2018) 157–170. https://doi.org/10.1016/j.buildenv.2018.04.012.
[37] D. Armson, M.A. Rahman, A.R. Ennos, A comparison of the shading effectiveness of five different street tree species in Manchester, UK, Arboric. Urban For. 39 (2013) 157–164.
[38] M.A. Rahman, D. Armson, A.R. Ennos, A comparison of the growth and cooling effectiveness of five commonly planted urban tree species, Urban Ecosyst. 18 (2015) 371–389. https://doi.org/10.1007/s11252-014-0407-7.
[39] L. Zhang, Q. Zhan, Y. Lan, Effects of the tree distribution and species on outdoor environment conditions in a hot summer and cold winter zone: A case study in Wuhan residential quarters, Build. Environ. 130 (2018) 27–39. https://doi.org/10.1016/j.buildenv.2017.12.014.
[40] R. Sanusi, D. Johnstone, P. May, S.J. Livesley, Microclimate benefits that different street tree species provide to sidewalk pedestrians relate to differences in Plant Area Index, Landsc. Urban Plan. 157 (2017) 502–511. https://doi.org/10.1016/j.landurbplan.2016.08.010.
[41] X. Chen, P. Zhao, Y. Hu, et al., Canopy transpiration and its cooling effect of three urban tree species in a subtropical city- Guangzhou, China, Urban For. Urban Green. 43 (2019) 126368. https://doi.org/10.1016/j.ufug.2019.126368.
[42] M. Jiao, W. Zhou, Z. Zheng, et al., Patch size of trees affects its cooling effectiveness: A perspective from shading and transpiration processes, Agric. For. Meteorol. 247 (2017) 293–299. https://doi.org/10.1016/j.agrformet.2017.08.013.
[43] E. Litvak, H.R. McCarthy, D.E. Pataki, A method for estimating transpiration of irrigated urban trees in California, Landsc. Urban Plan. 158 (2017) 48–61. https://doi.org/10.1016/j.landurbplan.2016.09.021.
[44] M.A. Rahman, A. Moser, A. Gold, T. Rötzer, S. Pauleit, Vertical air temperature gradients under the shade of two contrasting urban tree species during different types of summer days, Sci. Total Environ. 633 (2018) 100–111. https://doi.org/10.1016/j.scitotenv.2018.03.168.
[45] J. Konarska, J. Uddling, B. Holmer, M. Lutz, F. Lindberg, H. Pleijel, S. Thorsson, Transpiration of urban trees and its cooling effect in a high latitude city, Int. J. Biometeorol. 60 (2016) 159–172. https://doi.org/10.1007/s00484-015-1014-x.
[46] C. Wang, Z.H. Wang, C. Wang, S.W. Myint, Environmental cooling provided by urban trees under extreme heat and cold waves in U.S. cities, Remote Sens. Environ. 227 (2019) 28–43. https://doi.org/10.1016/j.rse.2019.03.024.
[47] M.A. Rahman, A. Moser, T. Rötzer, S. Pauleit, Comparing the transpirational and shading effects of two contrasting urban tree species, Urban Ecosyst. 22 (2019) 683–697. https://doi.org/10.1007/s11252-019-00853-x.
[48] W.T.L. Chow, A.J. Brazel, Assessing xeriscaping as a sustainable heat island mitigation approach for a desert city, Build. Environ. 47 (2012) 170–181. https://doi.org/10.1016/j.buildenv.2011.07.027.
[49] A. Middel, N. Chhetri, R. Quay, Urban forestry and cool roofs: Assessment of heat mitigation strategies in Phoenix residential neighborhoods, Urban For. Urban Green. 14 (2015) 178–186. https://doi.org/10.1016/j.ufug.2014.09.010.
[50] C.Y. Park, D.K. Lee, E.S. Krayenhoff, et al., Variations in pedestrian mean radiant temperature based on the spacing and size of street trees, Sustain. Cities Soc. (2019). https://doi.org/10.1016/j.scs.2019.101521.
[51] L.V. de Abreu-Harbich, L.C. Labaki, A. Matzarakis, Effect of tree planting design and tree species on human thermal comfort in the tropics, Landsc. Urban Plan. 138 (2015) 99–109. https://doi.org/10.1016/j.landurbplan.2015.02.008.
[52] Z. Tan, K.K.L. Lau, E. Ng, Planning strategies for roadside tree planting and outdoor comfort enhancement in subtropical high-density urban areas, Build. Environ. 120 (2017) 93–109. https://doi.org/10.1016/j.buildenv.2017.05.017.
[53] Z. Wu, L. Chen, Optimizing the spatial arrangement of trees in residential neighborhoods for better cooling effects: Integrating modeling with in-situ measurements, Landsc. Urban Plan. 167 (2017) 463–472. https://doi.org/10.1016/j.landurbplan.2017.07.015.
[54] Z. Wu, P. Dou, L. Chen, Comparative and combinative cooling effects of different spatial arrangements of buildings and trees on microclimate, Sustain. Cities Soc. (2019). https://doi.org/10.1016/j.scs.2019.101711.
[55] Q. Zhao, D.J. Sailor, E.A. Wentz, Impact of tree locations and arrangements on outdoor microclimates and human thermal comfort in an urban residential environment, Urban For. Urban Green. 32 (2018) 81–91. https://doi.org/10.1016/j.ufug.2018.03.022.
[56] M. Aminipouri, D. Rayner, F. Lindberg, et al., Urban tree planting to maintain outdoor thermal comfort under climate change: The case of Vancouver’s local climate zones, Build. Environ. 158 (2019) 226–236. https://doi.org/10.1016/j.buildenv.2019.05.022.
[57] Z.H. Wang, Monte Carlo simulations of radiative heat exchange in a street canyon with trees, Sol. Energy. 110 (2014) 704–713. https://doi.org/10.1016/j.solener.2014.10.012.
[58] T.E. Morakinyo, Y.F. Lam, Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon’s micro-climate and thermal comfort, Build. Environ. 103 (2016) 262–275. https://doi.org/10.1016/j.buildenv.2016.04.025.
[59] T. Eckmann, A. Morach, M. Hamilton, et al., A. McNamee, A. Haripriyan, D. Castillo, S. Grandy, A. Kessi, Measuring and modeling microclimate impacts of Sequoiadendron giganteum, Sustain. Cities Soc. 38 (2018) 509–525. https://doi.org/10.1016/j.scs.2017.12.028.
[60] S.H. Lee, S.U. Park, A vegetated urban canopy model for meteorological and environmental modelling, Boundary-Layer Meteorol. 126 (2008) 73–102. https://doi.org/10.1007/s10546-007-9221-6.
[61] H. Simon, J. Lindén, D. Hoffmann, P. Braun, M. Bruse, J. Esper, Modeling transpiration and leaf temperature of urban trees – A case study evaluating the microclimate model ENVI-met against measurement data, Landsc. Urban Plan. 174 (2018) 33–40. https://doi.org/10.1016/j.landurbplan.2018.03.003.
[62] J. Deng, B.J. Pickles, A. Kavakopoulos, T. Blanusa, C.H. Halios, S.T. Smith, L. Shao, Concept and methodology of characterising infrared radiative performance of urban trees using tree crown spectroscopy, Build. Environ. 157 (2019) 380–390. https://doi.org/10.1016/j.buildenv.2019.04.056.
[63] British Trees: native and non-native trees. https://www.woodlandtrust.org.uk/visiting-woods/trees-woods-and-wildlife/british-trees/ (accessed June 21, 2019).
[64] C.F. Dietrich, Uncertainty, calibration and probability: The statistics of scientific and industrial measurement, 2nd ed., New York, 1991. https://doi.org/10.1201/9780203734759.
[65] R Core Team, R: A language and environment for statistical computing, (2019). https://www.r-project.org/.
[66] W.H. Oksanen J, Blanchet FG, Friendly M, et al., vegan: Community Ecology Package. R package version 2.5-6, (2019). https://cran.r-project.org/package=vegan.
[67] M.F. Kassambara A, factoextra: Extract and Visualize the Results of Multivariate Data Analyses, (2017). https://cran.r-project.org/package=factoextra.
[68] S. Lê, J. Josse, F. Husson, FactoMineR: An R package for multivariate analysis, J. Stat. Softw. 25 (2008) 1–18. https://doi.org/10.18637/jss.v025.i01.
[69] P. Legendre, L. Legendre, Numerical Ecology, 3rd Editio, Elsevier, Amsterdam, Netherlands, 2012. https://www.elsevier.com/books/numerical-ecology/legendre/978-0-444-53868-0.
[70] J. Cavender-Bares, J.E. Meireles, J.J. Couture, et al., Associations of leaf spectra with genetic and phylogenetic variation in oaks: Prospects for remote detection of biodiversity, Remote Sens. 8 (2016). https://doi.org/10.3390/rs8030221.
[71] ImageJ User Guide. https://imagej.nih.gov/ij/docs/guide/index.html (accessed September 20, 2019).
[72] Reading, ENG, United Kingdom — Sunrise, Sunset, and Moon Times. https://www.timeanddate.com/astronomy/uk/reading (accessed June 10, 2019).
[73] Horse chestnut leaf-mining moth. https://www.rhs.org.uk/advice/profile?pid=533 (accessed September 8, 2019).
[74] D.S. Falster, M. Westoby, Leaf size and angle vary widely across species: What consequences for light interception?, New Phytol. 158 (2003) 509–525. https://doi.org/10.1046/j.1469-8137.2003.00765.x.