1. IARC. List of Classifications by cancer sites with sufficient or limited evidence in humans. Monogr. Identif. Carcinog. Hazards to Humans 1–124, 1–9 (2018).
2. Kubier, A., Wilkin, R. T. & Pichler, T. Cadmium in soils and groundwater: A review. Appl. Geochemistry 108, 104388 (2019).
3. Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F. & Kim, K.-H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 125, 365–385 (2019).
4. Zhang, L. et al. Variation in the BrHMA3 coding region controls natural variation in cadmium accumulation in Brassica rapa vegetables. J. Exp. Bot. 20, 5865–5878 (2019).
5. Zhou, Q., Yang, Y. & Yang, Z. Molecular dissection of cadmium-responsive transcriptome profile in a low-cadmium-accumulating cultivar of Brassica parachinensis. Ecotoxicol. Environ. Saf. 176, 85–94 (2019).
6. Zorrig, W. et al. Genetic analysis of cadmium accumulation in lettuce (Lactuca sativa). Plant Physiol. Biochem. 136, 67–75 (2019).
7. Wu, Y. et al. Comparative expression analysis of heavy metal ATPase subfamily genes between Cd-tolerant and Cd-sensitive turnip landraces. Plant Divers. 41, 275–283 (2019).
8. Gramlich, A. et al. Soil cadmium uptake by cocoa in Honduras. Sci. Total Environ. 612, 370–378 (2018).
9. Argüello, D. et al. Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Sci. Total Environ. 649, 120–127 (2019).
10. Meter, A., Atkinson, R. J. & Laliberte, B. Cadmium in cacao from Latin America and the Caribbean: A review of research and potential mitigation solutions. Rome Bioversity Int. 73 p (2019).
11. Rodríguez Albarrcín, H. S., Darghan Contreras, A. E. & Henao, M. C. Spatial regression modeling of soils with high cadmium content in a cocoa producing area of Central Colombia. Geoderma Reg. 16, e00214 (2019).
12. Vanderschueren, R., Montalvo, D., De Ketelaere, B., Delcour, J. A. & Smolders, E. The elemental composition of chocolates is related to cacao content and origin: A multi-element fingerprinting analysis of single origin chocolates. J. Food Compos. Anal. 83, 103277 (2019).
13. Zug, K. L. M., Huamaní Yupanqui, H. A., Meyberg, F., Cierjacks, J. S. & Cierjacks, A. Cadmium accumulation in Peruvian cacao (Theobroma cacao L.) and opportunities for mitigation. Water, Air, Soil Pollut. 230, 72 (2019).
14. The European Commission. Comission Regulation (EU) No 488/ 2014 of 12 May 2014 Amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in foodstuffs. Off. J. Eur. Union 138, 75–79 (2014).
15. Ramtahal, G., Umaharan, P., Hanuman, A., Davis, C. & Ali, L. The effectiveness of soil amendments, biochar and lime, in mitigating cadmium bioaccumulation in Theobroma cacao L. Sci. Total Environ. 693, 133563 (2019).
16. Lewis, C., Lennon, A. M., Eudoxie, G. & Umaharan, P. Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L. Sci. Total Environ. 640–641, 696–703 (2018).
17. Engbersen, N. et al. Cadmium accumulation and allocation in different cacao cultivars. Sci. Total Environ. 678, 660–670 (2019).
18. Ishikawa, S. et al. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc. Natl. Acad. Sci. U. S. A. 109, 19166–19171 (2012).
19. Tang, L. et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci. Rep. 7, 14438 (2017).
20. Peng, F. et al. Expression of TpNRAMP5, a metal transporter from Polish wheat (Triticum polonicum L.), enhances the accumulation of Cd, Co and Mn in transgenic Arabidopsis plants. Planta 247, 1395–1406 (2018).
21. Sui, F.-Q. et al. Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize. Plant Soil 433, 377–389 (2018).
22. Ullah, I., Wang, Y., Eide, D. J. & Dunwell, J. M. Evolution, and functional analysis of Natural Resistance-Associated Macrophage Proteins (NRAMPs) from Theobroma cacao and their role in cadmium accumulation. Sci. Rep. 8, 14412 (2018).
23. Cao, Z. Z. et al. Gene identification and transcriptome analysis of low cadmium accumulation rice mutant (lcd1) in response to cadmium stress using MutMap and RNA-seq. BMC Plant Biol. 19, 250 (2019).
24. Wang, C. et al. Overexpression of TtNRAMP6 enhances the accumulation of Cd in Arabidopsis. Gene 696, 225–232 (2019).
25. Wang, T. et al. Mutation at different sites of metal transporter gene OsNramp5 affects Cd accumulation and related agronomic traits in rice (Oryza sativa L.). Front. Plant Sci. 10, 1081 (2019).
26. Guttieri, M. J. et al. Prospects for selecting wheat with increased zinc and decreased cadmium concentration in grain. Crop Sci. 55, 1712–1728 (2015).
27. Liedschulte, V. et al. Impairing both HMA4 homeologs is required for cadmium reduction in tobacco. Plant. Cell Environ. 40, 364–377 (2017).
28. Shao, J. F., Xia, J., Yamaji, N., Shen, R. F. & Ma, J. F. Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter. J. Exp. Bot. 69, 2743–2752 (2018).
29. Cai, H. et al. Root-specific expression of rice OsHMA3 reduces shoot cadmium accumulation in transgenic tobacco. Mol. Breed. 39, 49 (2019).
30. Liu, C. et al. Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice. J. Integr. Plant Biol. (2019). doi:10.1111/jipb.12794
31. Lu, C. et al. Producing cadmium-free Indica rice by overexpressing OsHMA3. Environ. Int. 126, 619–626 (2019).
32. Yan, H. et al. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nat. Commun. 10, 2562 (2019).
33. Liu, C., Guttieri, M. J., Waters, B. M., Eskridge, K. M. & Baenziger, P. S. Selection of bread wheat for low grain cadmium concentration at the seedling stage using hydroponics versus molecular markers. Crop Sci. 59, 945–956 (2019).
34. Wiggenhauser, M. et al. Cadmium isotope fractionation in soil–wheat systems. Environ. Sci. Technol. 50, 9223–9231 (2016).
35. Imseng, M. et al. Towards an understanding of the Cd isotope fractionation during transfer from the soil to the cereal grain. Environ. Pollut. 244, 834–844 (2019).
36. Wei, R. et al. Stable isotope fractionation during uptake and translocation of cadmium by tolerant Ricinus communis and hyperaccumulator Solanum nigrum as influenced by EDTA. Environ. Pollut. 236, 634–644 (2018).
37. Barraza, F. et al. Cadmium isotope fractionation in the soil – cacao systems of Ecuador: a pilot field study. RSC Adv. 9, 34011–34022 (2019).
38. Fu, S. et al. The ABC transporter ABCG36 is required for cadmium tolerance in rice. J. Exp. Bot. 70, 5909–5918 (2019).
39. Liu, X. S. et al. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. BMC Plant Biol. 19, 283 (2019).
40. Wiggenhauser, M. et al. Zinc isotope fractionation during grain filling of wheat and a comparison of zinc and cadmium isotope ratios in identical soil-plant systems. New Phytol. 219, 195–205 (2018).
41. Wei, R. et al. Fractionation of stable cadmium isotopes in the cadmium tolerant Ricinus communis and hyperaccumulator Solanum nigrum. Sci. Rep. 6, 24309 (2016).
42. Prasad, M. N. V. Metallothioneins, metal binding complexes and metal sequestration in plants. in Heavy Metal Stress in Plants – From Molecules to Ecosystems 47–83 (Springer-Verlag, 2004).
43. Fujii, T., Moynier, F., Blichert-Toft, J. & Albarède, F. Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments. Geochim. Cosmochim. Acta 140, 553–576 (2014).
44. Freisinger, E. & Vašák, M. Cadmium in Metallothioneins. in 339–371 (Springer, Dordrecht, 2013). doi:10.1007/978-94-007-5179-8_11
45. De Oliveira, V. H., Ullah, I., Dunwell, J. M. & Tibbett, M. Mycorrhizal symbiosis induces divergent patterns of transport and partitioning of Cd and Zn in Populus trichocarpa. Environ. Exp. Bot. 171, 103925 (2020).
46. Nelson, B. K., Cai, X. & Nebenführ, A. A multicolored set of in-vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126–1136 (2007).
47. Murphy, K., Rehkämper, M., Kreissig, K., Coles, B. & van de Flierdt, T. Improvements in Cd stable isotope analysis achieved through use of liquid–liquid extraction to remove organic residues from Cd separates obtained by extraction chromatography. J. Anal. At. Spectrom. 31, 319–327 (2016).
48. Xue, Z., Rehkämper, M., Schönbächler, M., Statham, P. J. & Coles, B. J. A new methodology for precise cadmium isotope analyses of seawater. Anal. Bioanal. Chem. 402, 883–893 (2012).
49. Abouchami, W. et al. A Common Reference Material for Cadmium Isotope Studies - NIST SRM 3108. Geostand. Geoanalytical Res. 37, 5–17 (2013).