Accessibility navigation

Palm phytoliths of mid-elevation Andean forests

Huisman, S. N., Raczka, M. F. and McMichael, C. N. H. (2018) Palm phytoliths of mid-elevation Andean forests. Frontiers in ecology and evolution, 6. 193. ISSN 2296-701X

Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.


It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.3389/fevo.2018.00193


Palms are one of the most common tropical plant groups. They are widespread across lowland tropical forests, but many are found in higher altitudes have more constrained environmental ranges. The limited range of these species makes them particularly useful in paleoecological and paleoclimate reconstructions. Palms produce phytoliths, or silica structures, which are found in their vegetative parts (e.g., wood, leaves, etc.). Recent research has shown that several palms in the lowland tropical forests produce phytoliths that are diagnostic to the sub-family or genus-level. Here we characterize Andean palm phytoliths, and determine whether many of these species can also be identified by their silica structures. All of our sampled Andean palm species produced phytoliths, and we were able to characterize several previously unclassified morphotypes. Some species contained unique phytoliths that did not occur in other species, particularly Ceroxylon alpinium, which is indicative of specific climatic conditions. The differences in the morphologies of the Andean species indicate that palm phytolith analysis is particularly useful in paleoecological reconstructions. Future phytolith analyses will allow researchers to track how these palm species with limited environmental ranges have migrated up and down the Andean slopes as a result of past climatic change. The phytolith analyses can track local-scale vegetation dynamics, whereas pollen, which is commonly used in paleoecological reconstructions, reflects regional-scale vegetation change.

Item Type:Article
Divisions:No Reading authors. Back catalogue items
Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
ID Code:89921


Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation