Accessibility navigation


Quantification of ruminal Clostridium proteoclasticum by real-time PCR using a molecular beacon approach

Paillard, D., McKain, N., Rincon, M. T., Shingfield, K. J., Givens, D. I. ORCID: https://orcid.org/0000-0002-6754-6935 and Wallace, R. J. (2007) Quantification of ruminal Clostridium proteoclasticum by real-time PCR using a molecular beacon approach. Journal of Applied Microbiology, 103 (4). pp. 1251-1261. ISSN 1364-5072

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1111/j.1365-2672.2007.03349.x

Abstract/Summary

Aims: All members of the ruminal Butyrivibrio group convert linoleic acid (cis-9,cis-12-18 : 2) via conjugated 18 : 2 metabolites (mainly cis-9,trans-11-18 : 2, conjugated linoleic acid) to vaccenic acid (trans-11-18 : 1), but only members of a small branch, which includes Clostridium proteoclasticum, of this heterogeneous group further reduce vaccenic acid to stearic acid (18 : 0, SA). The aims of this study were to develop a real-time polymerase chain reaction (PCR) assay that would detect and quantify these key SA producers and to use this method to detect diet-associated changes in their populations in ruminal digesta of lactating cows. Materials and Results: The use of primers targeting the 16S rRNA gene of Cl. proteoclasticum was not sufficiently specific when only binding dyes were used for detection in real-time PCR. Their sequences were too similar to some nonproducing strains. A molecular beacon probe was designed specifically to detect and quantify the 16S rRNA genes of the Cl. proteoclasticum subgroup. The probe was characterized by its melting curve and validated using five SA-producing and ten nonproducing Butyrivibrio-like strains and 13 other common ruminal bacteria. Analysis of ruminal digesta collected from dairy cows fed different proportions of starch and fibre indicated a Cl. proteoclasticum population of 2-9% of the eubacterial community. The influence of diet on numbers of these bacteria was less than variations between individual cows. Conclusion: A molecular beacon approach in qPCR enables the detection of Cl. proteoclasticum in ruminal digesta. Their numbers are highly variable between individual animals. Signifance and Impact of the Study: SA producers are fundamental to the flow of polyunsaturated fatty acid and vaccenic acid from the rumen. The method described here enabled preliminary information to be obtained about the size of this population. Further application of the method to digesta samples from cows fed diets of more variable composition should enable us to understand how to control these bacteria in order to enhance the nutritional characteristics of ruminant-derived foods, including milk and beef.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Agriculture, Policy and Development
ID Code:9015
Uncontrolled Keywords:biohydrogenation, Butyrivibrio, Clostridium proteoclasticum, molecular, beacon, quantification, real-time PCR, rumen, stearic acid producers, CONJUGATED LINOLEIC-ACID, UNSATURATED FATTY-ACIDS, BUTYRIVIBRIO-FIBRISOLVENS, COMPETITIVE PCR, RUMEN, BACTERIA, HYBRIDIZATION, PROBE, ASSAY, BIOHYDROGENATION

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation