Accessibility navigation

Data mining at the IoT edge

Savaglio, C., Gerace, P., Di Fatta, G. and Fortino, G. (2019) Data mining at the IoT edge. In: 28th International Conference on Computer Communication and Networks, 29 July - 01 Aug 2019, Valencia, Spain,

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1109/ICCCN.2019.8846941


The Internet of Things (IoT) enables the interconnection of new cyber-physical devices which generate significant traffic of distributed, heterogeneous and dynamic data at the network edge. Since several IoT applications demand for short response times (e.g., industrial applications, emergency management, real-time systems) and, at the same time, rely on resource-constrained devices, the adoption of traditional Data Mining techniques is neither effective nor efficient. Therefore, conventional Data Mining techniques need to be adjusted for optimizing response times, energy consumption and data traffic while still providing adequate accuracy as required by the IoT application. In this paper, new Data Mining approaches particularly tailored for the IoT scenario have been investigated, in particular with respect to the promising, emerging novel distributed computing paradigm of Edge Computing. In detail, two approximated versions of K-Means clustering algorithm, centralized and distributed, have been implemented in the EdgeCloudSim simulation framework and validated on a real system. As highlighted by the algorithm performance analysis, choosing an approximated and distributed clustering solution can provide benefits in terms of computation, communication and energy consumption, while maintaining high levels of accuracy. The management of such trade-off, obviously, has to be done in the light of the specific IoT application requirements.

Item Type:Conference or Workshop Item (Paper)
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Computer Science
ID Code:90164

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation