Abdolali A., Ngo H.H., Guo W., Lu S., Chen S.S., Nguyen N.C., Zhang X., Wang J., Wu Y., 2016. A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study. Sci. Total. Environ. 542, 603–611. http://dx.doi.org/10.1016/j.scitotenv.2015.10.095
Alloway B.J., 2013. Heavy metals in soils, 3rd edn. Springer, Netherlands. 10.1007/978-94-007-4470-7
Amirnia S., Ray M.B., Margaritis A., 2015. Heavy metals removal from aqueous solutions using Saccharomyces cerevisiae in a novel continuous bioreactor–biosorption system. Chem. Eng. J. 264, 863–872. http://dx.doi.org/10.1016/j.cej.2014.12.016
Benatti M.R., Yookongkaew N., Meetam M., Guo W.J., Punyasuk N., AbuQamar S., Goldsbrough P., 2014. Metallothionein deficiency impacts copper accumulation and redistribution in leaves and seeds of Arabidopsis. New. Phytol. 202, 940–951. https://doi.org/10.1111/nph.12718
Beni A.A., Esmaeili A., 2020. Biosorption, an efficient method for removing heavy metals
from industrial effluents: A Review. Environ. Technol. Innov. 17, 100503. https://doi.org/10.1016/j.eti.2019.100503
Brady D., Duncan JR., 1994. Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl. Mibrobiol. Biot. 41, 149–154. https://doi.org/10.1007/BF00166098
Bulgarelli R.G., Araujo P., Tezotto T., Mazzafera P., Andrade S.A.L., 2016. Expression of metallothionein genes in coffee leaves in response to the absence or excess of Cu and Zn. Theor Exp. Plant. Phys. 28, 371–383. https://doi.org/10.1007/s40626-016-0075-5
Bulgariu D., Bulgariu L., 2016. Potential use of alkaline treated algae waste biomass as sustainable biosorbent for clean recovery of cadmium(II) from aqueous media: batch and column studies. J. Clean. Prod. 112, 4525-4533. https://doi.org/10.1016/j.jclepro.2015.05.124
Chen C., Wang J., 2008. Removal of Pb2+, Ag+, Cs+ and Sr2+ from aqueous solution by brewery’s waste biomass. J. Hazard. Mater. 151, 65–70. https://doi.org/10.1016/j.jhazmat.2007.05.046
Cismowski M.J., Narula S.S., Armitage I.M., Chernaik M.L., Huang PC., 1991. Mutation of invariant cysteines in mammalian metallothionein alters metal binding capacity, cadmium resistance and 113Cd NMR spectrum. J. Biol. Chem. 266, 24390–24397.
Cobbett C., Goldsbrough P., 2002. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Ann. R. Plant. Biol. 53, 159–182. https://doi.org/10.1146/annurev.arplant.53.100301.135154
De Oliveira V.H., Tibbett M., 2018. Tolerance, toxicity and transport of Cd and Zn in Populus trichocarpa. Environ. Exp. Bot. 155, 281–292. https://doi.org/10.1016/j.envexpbot.2018.07.011
De Oliveira V.H., Ullah I., Dunwell J.M., Tibbett M., 2020. Mycorrhizal symbiosis induces divergent patterns of transport and partitioning of Cd and Zn in Populus trichocarpa. Environ. Exp. Bot. 171, 103925. https://doi.org/10.1016/j.envexpbot.2019.103925
Domènech J., Mir G., Huguet G., Capdevila M., Molinas M., Atrian S., 2006. Plant metallothionein domains: functional insight into physiological metal binding and protein folding. Biochimie 88, 583–593. https://doi.org/10.1016/j.biochi.2005.11.002
Farcasanu I.C., Ruta L.L., 2017. Metallothioneins, Saccharomyces cerevisiae, and heavy metals: a biotechnology triad? In: Lucas C., Pais C. (Eds) Old Yeasts - New Questions. InTech Open, pp 21–39. http://dx.doi.org/10.5772/intechopen.70340
Goksungur Y., Uren S., Guvenc U., 2005. Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresource Technol. 96, 103–109. https://doi.org/10.1016/j.biortech.2003.04.002
Gu C.S., Liu L.Q., Zhao Y.H., Deng Y.M., Zhu X.D., Huang S.Z., 2014. Overexpression of Iris lactea var. chinensis metallothionein llMT2a enhances cadmium tolerance in Arabidopsis thaliana. Ecotox. Environ. Safe. 105, 22-28. http://dx.doi.org/10.1016/j.ecoenv.2014.04.002
Guo W.J., Meetam M., Goldsbrough P.B., 2008. Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol. 146, 1697–1706. https://doi.org/10.1104/pp.108.115782
Hassinen V., Vallinkoski V.M., Issakainen S., Tervahauta A., Karenlampi S., Servomaa K., 2009. Correlation of foliar MT2b expression with Cd and Zn concentrations in hybrid aspen (Populus tremula x tremuloides) grown in contaminated soil. Environ. Pollut. 157, 922–930. https://doi.org/10.1016/j.envpol.2008.10.023
Hassinen V.H., Tervahauta A.I., Schat H., Karenlampi S.O., 2011. Plant metallothioneins – metal chelators with ROS scavenging activity? Plant Biol. 13, 225–232. https://doi.org/10.1111/j.1438-8677.2010.00398.x
He S., He Z., Yang X., Stoffella P.J., Baligar V.C., 2015. Soil biogeochemistry, plant physiology, and phytoremediation of cadmium-contaminated soils. In: Sparks D.L. (Ed.) Advances in Agronomy. Elsevier Inc, Oxford, pp 135–225. https://doi.org/10.1016/bs.agron.2015.06.005
Hosiner D., Gerber S., Lichtenberg-Frate H., Glaser W., Schuller C., Klipp E., 2014. Impact of acute metal stress in Saccharomyces cerevisiae. Plos One. 9:e83330. https://doi.org/10.1371/journal.pone.0083330
Hu P., Sorensen C., Gross M.L., 1995. Influences of peptide side chains on the metal ion binding site in metal ion-cationized peptides: participation of aromatic rings in metal chelation. J. Am. Soc. Mass. Spectr. 6, 1079–1085. https://doi.org/10.1016/1044-0305(95)00549-8
Jaakola L., Pirtilla M., Halonen M., Hohtola A., 2001. Isolation of high quality RNA from Bilberry (Vaccinium myrtillus L.) fruit. Mol. Biot. 19, 201–203. https://doi.org/10.1385/MB:19:2:201
Jamali M., Kazi T.G., Arain M.B., Afridi H.I., Jalbani N., Kandhro G.A., Shah A.Q., Baig J.A., 2009. Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown in soil amended with domestic sewage sludge. J. Hazard. Mater. 164, 1386–1391. https://doi.org/10.1016/j.jhazmat.2008.09.056
Janssen M.P.M., Ma W.C., Van Straalen N.M., 1993. Biomagnification of metals in terrestrial ecosystems, Sci. Total. Environ. 134, 511–524. https://doi.org/10.1016/S0048-9697(05)80053-1
Jin S., Sun D., Wang J., Li Y., Wang X., Liu S., 2014. Expression of rgMT gene, enconding for a rice metallothionein-like protein in Saccharomyces cerevisiae and Arabidopsis thaliana. J. Genet. 93, 709–718.
Joutey N.T., Bahafid W., Sayel H., Ghachtouli N.E., 2013. Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Chamy R. (Ed.) Biodegradation - Life of Science. InTech, Rijeka, pp 289–320. http://dx.doi.org/10.5772/56194
Karathia H., Vilaprinyo E., Sorribas A., Alves R., 2011. Saccharomyces cerevisiae as a model organism: a comparative study. Plos One 6:e16015. https://doi.org/10.1371/journal.pone.0016015
Khan M.A., Khan S., Khan A., Alam M., 2017. Soil contamination with cadmium, consequences and remediation using organic amendments. Sci. Total Environ. 601–602, 1591–1605. http://dx.doi.org/10.1016/j.scitotenv.2017.06.030
Kim N., Park M., Park D., 2015. A new efficient forest biowaste as biosorbent for removal of cationic heavy metals. Bioresource Technol. 175, 629–632. http://dx.doi.org/10.1016/j.biortech.2014.10.092
Kim Y.O., Patel D.H., Lee D.S., Song Y., Bae H.J., 2011. High cadmium-binding ability of a novel Colocasia esculenta metallothionein increases cadmium tolerance in Escherichia coli and tobacco. Biosci. Biotech. Bioch. 75, 1912–1920. https://doi.org/10.1271/bbb.110289
Kobayashi K., Kuroda J., Shibata N., Hasegawa T., Seko Y., Satoh M., Tohyama C., Takano H., Imura N., Sakabe K., Fujishiro H., Himeno S., 2007. Induction of metallothionein by manganese is completely dependent on interleukin-6 production. J. Pharmacol. Exp. Ther. 320, 721–727. https://doi.org/10.1124/jpet.106.112912
Kohler A., Blaudez D., Chalot M., Martin F., 2004. Cloning and expression of multiple metallothioneins from hybrid poplar. New Phytol. 164, 83–93. https://doi.org/10.1111/j.1469-8137.2004.01168.x
Kulshreshtha S., 2013. Genetically engineered microorganisms: a problem solving approach for bioremediation. J. Bioremediat. Biodegrad. 4:e133.7. doi:10.4172/2155-6199.1000e133
Lei M., Zhang Y., Khan S., Qin P., Liao B., 2010. Pollution, fractionation, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils from a Pb/Zn mining area. Environ. Monit. Assess. 168, 215–222. https://doi.org/10.1007/s10661-009-1105-4
Ma J.C., Dougherty D., 1997. The Cation−π Interaction. Chem. Rev. 97, 1303–1324. https://doi.org/10.1021/cr9603744
Machado M.D., Santos M.S.F., Gouveia C., Soares H.M.V.M., Soares E.V., 2008. Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: the flocculation as a separation process. Bioresource Technol. 99, 2107–2115. https://doi.org/10.1016/j.biortech.2007.05.047
Mahadevi A.S., Sastry G.N., 2013. Cation−π interaction: its role and relevance in chemistry, biology, and material science. Chem. Rev. 113, 2100–2138. https://doi.org/10.1021/cr300222d
Marques P.A.S.S., Rosa M.F., Pinheiro H.M., 2000. pH effects on the removal of Cu2+, Cd2+ and Pb2+ from aqueous solution by waste brewery biomass. Bioprocess. Eng. 23, 135–141. https://doi.org/10.1007/PL00009118
Mirlean N., Roisenberg A., 2006. The effect of emissions of fertilizer production on the environment contamination by cadmium and arsenic in southern Brazil. Environ. Pollut. 143, 335–340. https://doi.org/10.1016/j.envpol.2005.11.022
Nguyen H., Rineau F., Vangronsveld J., Cuypers A., Colpaert J.V., Ruytinx J., 2017. A novel, highly conserved metallothionein family in basidiomycete fungi and characterization of two representative SlMTa and SlMTb genes in the ectomycorrhizal fungus Suillus luteus. Environ. Microbiol. 19, 2577–2587. https://doi.org/10.1111/1462-2920.13729
Oliveira R.P.S., Basso L.C., Junior A.P., Penna T.C.V., Borghi M.D., Converti A., 2012. Response of Saccharomyces cerevisiae to cadmium and nickel stress: the use of the sugar cane vinasse as a potential mitigator. Biol. Trace Elem. Res. 145, 71–80. https://doi.org/10.1007/s12011-011-9156-0
Pankiewicz U., Sujka M., Jamroz J., 2015. Bioaccumulation of the selected metal ions in Saccharomyces cerevisiae cells under treatment of the culture with Pulsed Electric Field (PEF). J. Membrane Biol. 248, 943–949. https://doi.org/10.1007/s00232-015-9844-3
Ruiz O.N., Alvarez D., Gonzalez-Ruiz G., Torres C., 2011. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnol. 11, 1–8. https://doi.org/10.1186/1472-6750-11-82
Ruta .LL., Lin Y.F., Kissen R., Nicolau I., Neagoe A.D., Ghenea S., Bones A.M., Farcasanu I.C., 2017. Anchoring plant metallothioneins to the inner face of the plasma membrane of Saccharomyces cerevisiae cells leads to heavy metal accumulation. Plos One 12:e0178393. https://doi.org/10.1371/journal.pone.0178393
Ruttkay-Nedecky B., Nejdl L., Gumulec J., Zitka O., Masarik M., Eckschlager T., Stiborova M., Adam V., Kizek R., 2013. The role of metallothionein in oxidative stress. Int. J. Mol. Sci. 14, 6044–6066. https://doi.org/10.3390/ijms14036044
Schothorst J., Van Zeebroeck G., Thevelein J.M., 2017. Identification of Ftr1 and Zrt1 as iron and zinc micronutrient transceptors for activation of the PKA pathway in Saccharomyces cerevisiae. Microb. Cell. 4, 74–89. 10.15698/mic2017.03.561
Sheoran V., Sheoran A.S., Poonia P., 2011. Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Environ. Sci. Technol. 41, 168–214. https://doi.org/10.1080/10643380902718418
Singh S., Kang S.H., Mulchandani A., Chen W., 2008. Bioremediation: environmental clean-up through pathway engineering. Curr. Opin. Biotech. 19, 437–444. https://doi.org/10.1016/j.copbio.2008.07.012
Smolders E., Mertens J., 2013. Cadmium. In: Alloway B.J. (Ed.) Heavy metals in soils, 3rd edn. Springer, Nehterlands, pp 283–311. 10.1007/978-94-007-4470-7
Soares E.V., 2011. Flocculation in Saccharomyces cerevisiae: a review. J Appl Microbiol 110, 1–18. https://doi.org/10.1111/j.1365-2672.2010.04897.x
Sriprang R., Hayashi M., Ono H., Takagi M., Hirata K., Murooka Y., 2003. Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl. Environ. Microbiol. 69, 1791–1796. https://dx.doi.org/10.1128%2FAEM.69.3.1791-1796.2003
Stewart M., Dunlap T., Dourlain E., Grant B., McFail-Isom L., 2013. Cations form sequence selective motifs within DNA grooves via a combination of cation-pi and ion-dipole/hydrogen bond interactions. Plos One 8:e71420. https://doi.org/10.1371/journal.pone.0071420
Thorsen M., Perrone G.G., Kristiansson E., Traini M., Ye T., Dawes I.W., Nerman O., Tamas M.H., 2009. Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae. BMC Genomics 10, 105. https://doi.org/10.1186/1471-2164-10-105
Ude C., Schmidt-Hager J., Findeis M., John GT., Scheper T., Beutel S., 2014. Application of an online-biomass sensor in an optical multisensory platform prototype for growth monitoring of biotechnical relevant microorganism and cell lines in single-use shake flasks. Sensors 14, 17390–17405. https://doi.org/10.3390/s140917390
Ullah I., Wang Y., Eide D.J., Dunwell J.M., 2018. Evolution, and functional analysis of Natural Resistance-Associated Macrophage Proteins (NRAMPs) from Theobroma cacao and their role in cadmium accumulation. Sci. Rep. 8:14412. https://doi.org/10.1038/s41598-018-32819-y
Vandenbossche M., Dehaese A., Casetta M., Jimenez M., Traisnel M., 2015. Tyrosine: an efficient natural molecule for copper remediation. Green Mater. 3, 1–9. https://doi.org/10.1680/gmat.14.00006
Vijayaraghavan K., Balasubramanian R., 2015. Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. J. Environ. Manage. 160, 283–296. https://doi.org/10.1016/j.jenvman.2015.06.030
Vijver M.G., Gestel C.A.M., Lanno R.P., Van Straalen N.M., Peijnenburg W.J.G.M., 2004. Internal metal sequestration and its ecotoxicological relevance: a review, Environ. Sci. Technol. 38, 4705–4712. https://doi.org/10.1021/es040354g
Wang J., Chen C., 2006. Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol. Adv. 24, 427–451. https://doi.org/10.1016/j.biotechadv.2006.03.001
Wang J., Chen C., 2009. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27, 195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002
Wong H.L., Sakamoto T., Kawasaki T., Umemura K., Shimamoto K., 2004. Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol. 135, 1447–1456. https://doi.org/10.1104/pp.103.036384
Zhang M., Takano T., Liu S., Zhang X., 2014a. Abiotic stress response in yeast and metal-binding ability of a type 2 metallothionein-like protein (PutMT2) from Puccinellia tenuiflora. Mol. Biol. Rep. 41, 5839–5849. https://doi.org/10.1007/s11033-014-3458-1
Zhang J., Zhang M., Tian S., Lu L., Shohag M.J.I., Yang X., 2014b. Metallothionein 2 (SaMT2) from Sedum alfredii Hance confers increased Cd tolerance and accumulation in yeast and tobacco, Plos One 9:e102750. https://doi.org/10.1371/journal.pone.0102750
Zhao H., Eide D., 1996. The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. J. Biol. Chem. 271, 23203–23210. 10.1074/jbc.271.38.23203
Zhou J., Goldsbrough P.B., 1994. Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6, 875–884. https://doi.org/10.1105/tpc.6.6.875