The impact of two arable field margin management schemes on litter decompositionSmith, J., Potts, S. G. ORCID: https://orcid.org/0000-0002-2045-980X, Woodcock, B. A. and Eggleton, P. (2009) The impact of two arable field margin management schemes on litter decomposition. Applied Soil Ecology, 41 (1). pp. 90-97. ISSN 0929-1393 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1016/j.apsoil.2008.09.003 Abstract/SummaryA primary objective of agri-environment schemes is the conservation of biodiversity; in addition to increasing the value of farmland for wildlife, these schemes also aim to restore natural ecosystem functioning. The management of scheme options can influence their value for delivering ecosystem services by modifying the composition of floral and faunal communities. This study examines the impact of an agri-environment scheme prescription on ecosystem functioning by testing the hypothesis that vegetation management influences decomposition rates in grassy arable field margins. The effects of two vegetation management practices in arable field margins - cutting and soil disturbance (scarification) - on litter decomposition were compared using a litterbag experimental approach in early April 2006. Bags had either small mesh designed to restrict access to soil macrofauna, or large mesh that would allow macrofauna to enter. Bags were positioned on the soil surface or inserted into the soil in cut and scarified margins, retrieved after 44, 103 and 250 days and the amount of litter mass remaining was calculated. Litter loss from the litterbags with large mesh was greater than from the small mesh bags, providing evidence that soil macrofauna accelerate rates of litter decomposition. In the large mesh bags, the proportion of litter remaining in bags above and belowground in the cut plots was similar, while in the scarified plots, there was significantly more litter left in the aboveground bags than in the belowground bags. This loss of balance between decomposition rates above and belowground in scarified margins may have implications for the development and maintenance of grassy arable field margins by influencing nutrient availability for plant communities. (C) 2008 Elsevier B.V. All rights reserved.
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |