Aminipouri, M., Rayner, D., Lindberg, F., Thorsson, S., Knudby, A.J., Zickfeld, K., Middel, A., Krayenhoff, E.S., 2019. Urban tree planting to maintain outdoor thermal comfort under climate change: The case of Vancouver’s local climate zones. Build. Environ. 158, 226–236. https://doi.org/10.1016/j.buildenv.2019.05.022
Armson, D., Rahman, M.A., Ennos, A.R., 2013. A comparison of the shading effectiveness of five different street tree species in Manchester, UK. Arboric. Urban For. 39, 157–164.
Benham, S.E., Houston Durrant, T., Caudullo, G., de Rigo, D., 2016. Taxus baccata in Europe: distribution, habitat, usage and threats. Eur. Atlas For. Tree Species 183.
Bowler, D.E., Buyung-Ali, L., Knight, T.M., Pullin, A.S., 2010. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 97, 147–155. https://doi.org/10.1016/j.landurbplan.2010.05.006
Christidis, N., Jones, G.S., Stott, P.A., 2015. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Chang. 5, 46–50. https://doi.org/10.1038/nclimate2468
de Abreu-Harbich, L.V., Labaki, L.C., Matzarakis, A., 2015. Effect of tree planting design and tree species on human thermal comfort in the tropics. Landsc. Urban Plan. 138, 99–109. https://doi.org/10.1016/j.landurbplan.2015.02.008
Deng, J., Pickles, B.J., Kavakopoulos, A., Blanusa, T., Halios, C.H., Smith, S.T., Shao, L., 2019. Concept and methodology of characterising infrared radiative performance of urban trees using tree crown spectroscopy. Build. Environ. 157, 380–390. https://doi.org/10.1016/j.buildenv.2019.04.056
Deng, J., Pickles, B.J., Smith, S.T., Shao, L., 2020. Infrared radiative performance of urban trees: spatial distribution and interspecific comparison among ten species in the UK by in-situ spectroscopy. Build. Environ. 172, 106682. https://doi.org/10.1016/j.buildenv.2020.106682
Duffie, J.A., Beckman, W.A., 2013. Solar Engineering of Thermal Processes: Fourth Edition, Solar Engineering of Thermal Processes: Fourth Edition. https://doi.org/10.1002/9781118671603
Eckmann, T., Morach, A., Hamilton, M., Walker, J., Simpson, L., Lower, S., McNamee, A., Haripriyan, A., Castillo, D., Grandy, S., Kessi, A., 2018. Measuring and modeling microclimate impacts of Sequoiadendron giganteum. Sustain. Cities Soc. 38, 509–525. https://doi.org/10.1016/j.scs.2017.12.028
Garcia-Herrera, R., Díaz, J., Trigo, R.M., Luterbacher, J., Fischer, E.M., 2010. A review of the european summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol. 40, 267–306. https://doi.org/10.1080/10643380802238137
Gasparrini, A., Armstrong, B., 2011. The impact of heat waves on mortality. Epidemiology. https://doi.org/10.1097/EDE.0b013e3181fdcd99
Georgi, N.J., Zafiriadis, K., 2006. The impact of park trees on microclimate in urban areas. Urban Ecosyst. 9, 195–209. https://doi.org/10.1007/s11252-006-8590-9
Gillner, S., Vogt, J., Tharang, A., Dettmann, S., Roloff, A., 2015. Role of street trees in mitigating effects of heat and drought at highly sealed urban sites. Landsc. Urban Plan. 143, 33–42. https://doi.org/10.1016/j.landurbplan.2015.06.005
Guo, Y., Gasparrini, A., Armstrong, B.G., Tawatsupa, B., Tobias, A., Lavigne, E., De Sousa Zanotti Stagliorio Coelho, M., Pan, X., Kim, H., Hashizume, M., Honda, Y., Leon Guo, Y.L., Wu, C.F., Zanobetti, A., Schwartz, J.D., Bell, M.L., Scortichini, M., Michelozzi, P., Punnasiri, K., Li, S., Tian, L., Garcia, S.D.O., Seposo, X., Overcenco, A., Zeka, A., Goodman, P., Dang, T.N., Van Dung, D., Mayvaneh, F., Saldiva, P.H.N., Williams, G., Tong, S., 2017. Heat wave and mortality: A multicountry, multicommunity study. Environ. Health Perspect. 125, 1–11. https://doi.org/10.1289/EHP1026
Hsieh, C.M., Li, J.J., Zhang, L., Schwegler, B., 2018. Effects of tree shading and transpiration on building cooling energy use. Energy Build. 159, 382–397. https://doi.org/10.1016/j.enbuild.2017.10.045
IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ipcc.
Irmak, M.A., Yilmaz, S., Mutlu, E., Yilmaz, H., 2018. Assessment of the effects of different tree species on urban microclimate. Environ. Sci. Pollut. Res. 25, 15802–15822. https://doi.org/10.1007/s11356-018-1697-8
Jamei, E., Rajagopalan, P., Seyedmahmoudian, M., Jamei, Y., 2016. Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renew. Sustain. Energy Rev. 54, 1002–1017. https://doi.org/10.1016/j.rser.2015.10.104
Kong, F., Sun, C., Liu, F., Yin, H., Jiang, F., Pu, Y., Cavan, G., Skelhorn, C., Middel, A., Dronova, I., 2016. Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer. Appl. Energy 183, 1428–1440. https://doi.org/10.1016/j.apenergy.2016.09.070
Kong, L., Lau, K.K.L., Yuan, C., Chen, Y., Xu, Y., Ren, C., Ng, E., 2017. Regulation of outdoor thermal comfort by trees in Hong Kong. Sustain. Cities Soc. 31, 12–25. https://doi.org/10.1016/j.scs.2017.01.018
Konijnendijk, C.C., Nilsson, K., Randrup, T.B., Schipperijn, J., 2005. Urban forests and trees: A reference book, Springer-Verlag Berlin Heidelberg. Springer-Verlag Berlin Heidelberg, New York. https://doi.org/10.1007/3-540-27684-X
Krayenhoff, E.S., Christen, A., Martilli, A., Oke, R.T., 2014. A Multi-layer Radiation Model for Urban Neighbourhoods with Trees. Boundary-Layer Meteorol. 151, 139–178. https://doi.org/10.1007/s10546-013-9883-1
Lee, H., Mayer, H., Chen, L., 2016. Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landsc. Urban Plan. 148, 37–50. https://doi.org/10.1016/j.landurbplan.2015.12.004
Leuzinger, S., Vogt, R., Körner, C., 2010. Tree surface temperature in an urban environment. Agric. For. Meteorol. 150, 56–62. https://doi.org/10.1016/j.agrformet.2009.08.006
Liu, Y., Harris, D.J., 2008. Effects of shelterbelt trees on reducing heating-energy consumption of office buildings in Scotland. Appl. Energy 85, 115–127. https://doi.org/10.1016/j.apenergy.2007.06.008
Morakinyo, T.E., Lau, K.K.L., Ren, C., Ng, E., 2018. Performance of Hong Kong’s common trees species for outdoor temperature regulation, thermal comfort and energy saving. Build. Environ. 137, 157–170. https://doi.org/10.1016/j.buildenv.2018.04.012
Moss, J.L., Doick, K.J., Smith, S., Shahrestani, M., 2019. Influence of evaporative cooling by urban forests on cooling demand in cities. Urban For. Urban Green. 37, 65–73. https://doi.org/10.1016/j.ufug.2018.07.023
Park, C.Y., Lee, D.K., Krayenhoff, E.S., Heo, H.K., Hyun, J.H., Oh, K., Park, T.Y., 2019. Variations in pedestrian mean radiant temperature based on the spacing and size of street trees. Sustain. Cities Soc. 48, 1–9. https://doi.org/10.1016/j.scs.2019.101521
Rahman, M.A., Armson, D., Ennos, A.R., 2015. A comparison of the growth and cooling effectiveness of five commonly planted urban tree species. Urban Ecosyst. 18, 371–389. https://doi.org/10.1007/s11252-014-0407-7
Rahman, M.A., Hartmann, C., Moser-Reischl, A., von Strachwitz, M.F., Paeth, H., Pretzsch, H., Pauleit, S., Rötzer, T., 2020a. Tree cooling effects and human thermal comfort under contrasting species and sites. Agric. For. Meteorol. 287, 107947. https://doi.org/10.1016/j.agrformet.2020.107947
Rahman, M.A., Stratopoulos, L.M.F., Moser-Reischl, A., Zölch, T., Häberle, K.H., Rötzer, T., Pretzsch, H., Pauleit, S., 2020b. Traits of trees for cooling urban heat islands: A meta-analysis. Build. Environ. 170. https://doi.org/10.1016/j.buildenv.2019.106606
Roy, S., Byrne, J., Pickering, C., 2012. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 11, 351–363. https://doi.org/10.1016/j.ufug.2012.06.006
Sikkema, R., Caudullo, G., de Rigo, D., 2016. Carpinus betulus. Eur. Atlas For. Tree Species. 74–75.
Speak, A., Montagnani, L., Wellstein, C., Zerbe, S., 2020. The influence of tree traits on urban ground surface shade cooling. Landsc. Urban Plan. 197, 103748. https://doi.org/10.1016/j.landurbplan.2020.103748
Taleghani, M., 2018. Outdoor thermal comfort by different heat mitigation strategies- A review. Renew. Sustain. Energy Rev. 81, 2011–2018. https://doi.org/10.1016/j.rser.2017.06.010
Tan, P.Y., Wong, N.H., Tan, C.L., Jusuf, S.K., Schmiele, K., Chiam, Z.Q., 2020. Transpiration and cooling potential of tropical urban trees from different native habitats. Sci. Total Environ. 705, 135764. https://doi.org/10.1016/j.scitotenv.2019.135764
Tan, Z., Lau, K.K.L., Ng, E., 2017. Planning strategies for roadside tree planting and outdoor comfort enhancement in subtropical high-density urban areas. Build. Environ. 120, 93–109. https://doi.org/10.1016/j.buildenv.2017.05.017
Tan, Z., Lau, K.K.L., Ng, E., 2016. Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy Build. 114, 265–274. https://doi.org/10.1016/j.enbuild.2015.06.031
Tang, M., Zheng, X., 2019. Experimental study of the thermal performance of an extensive green roof on sunny summer days. Appl. Energy 242, 1010–1021. https://doi.org/10.1016/j.apenergy.2019.03.153
Upreti, R., Wang, Z.H., Yang, J., 2017. Radiative shading effect of urban trees on cooling the regional built environment. Urban For. Urban Green. 26, 18–24. https://doi.org/10.1016/j.ufug.2017.05.008
Wang, C., Wang, Z.H., Yang, J., 2018. Cooling Effect of Urban Trees on the Built Environment of Contiguous United States. Earth’s Futur. 6, 1066–1081. https://doi.org/10.1029/2018EF000891
Wang, Chenghao, Wang, Z.H., Wang, Chuyuan, Myint, S.W., 2019. Environmental cooling provided by urban trees under extreme heat and cold waves in U.S. cities. Remote Sens. Environ. 227, 28–43. https://doi.org/10.1016/j.rse.2019.03.024
Wang, Z.H., 2014. Monte Carlo simulations of radiative heat exchange in a street canyon with trees. Sol. Energy 110, 704–713. https://doi.org/10.1016/j.solener.2014.10.012
Wang, Z.H., Zhao, X., Yang, J., Song, J., 2016. Cooling and energy saving potentials of shade trees and urban lawns in a desert city. Appl. Energy 16, 437–444. https://doi.org/10.1016/j.apenergy.2015.10.047
Wu, Z., Chen, L., 2017. Optimizing the spatial arrangement of trees in residential neighborhoods for better cooling effects: Integrating modeling with in-situ measurements. Landsc. Urban Plan. 167, 463–472. https://doi.org/10.1016/j.landurbplan.2017.07.015
Wu, Z., Dou, P., Chen, L., 2019. Comparative and combinative cooling effects of different spatial arrangements of buildings and trees on microclimate. Sustain. Cities Soc. https://doi.org/10.1016/j.scs.2019.101711
Yang, A.S., Juan, Y.H., Wen, C.Y., Chang, C.J., 2017. Numerical simulation of cooling effect of vegetation enhancement in a subtropical urban park. Appl. Energy 192, 178–200. https://doi.org/10.1016/j.apenergy.2017.01.079
Zecchin, B., Caudullo, G., Rigo, D. de, 2016. Acer campestre : acero campestre. Eur. Atlas For. Tree Species 52–53.
Zhang, L., Zhan, Q., Lan, Y., 2018. Effects of the tree distribution and species on outdoor environment conditions in a hot summer and cold winter zone: A case study in Wuhan residential quarters. Build. Environ. 130, 27–39. https://doi.org/10.1016/j.buildenv.2017.12.014
Zhao, Q., Sailor, D.J., Wentz, E.A., 2018. Impact of tree locations and arrangements on outdoor microclimates and human thermal comfort in an urban residential environment. Urban For. Urban Green. 32, 81–91. https://doi.org/10.1016/j.ufug.2018.03.022
Zheng, S., Guldmann, J.M., Liu, Z., Zhao, L., 2018. Influence of trees on the outdoor thermal environment in subtropical areas: An experimental study in Guangzhou, China. Sustain. Cities Soc. 42, 482–497. https://doi.org/10.1016/j.scs.2018.07.025
Zhou, W., Wang, J., Cadenasso, M.L., 2017. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens. Environ. 195, 1–12. https://doi.org/10.1016/j.rse.2017.03.043