Revisiting proportion estimatorsBöhning, D. and Viwatwongkasem, C. (2005) Revisiting proportion estimators. Statistical Methods in Medical Research, 14 (2). pp. 147-169. ISSN 0962-2802 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1191/0962280205sm393oa Abstract/SummaryProportion estimators are quite frequently used in many application areas. The conventional proportion estimator (number of events divided by sample size) encounters a number of problems when the data are sparse as will be demonstrated in various settings. The problem of estimating its variance when sample sizes become small is rarely addressed in a satisfying framework. Specifically, we have in mind applications like the weighted risk difference in multicenter trials or stratifying risk ratio estimators (to adjust for potential confounders) in epidemiological studies. It is suggested to estimate p using the parametric family (see PDF for character) and p(1 - p) using (see PDF for character), where (see PDF for character). We investigate the estimation problem of choosing c 0 from various perspectives including minimizing the average mean squared error of (see PDF for character), average bias and average mean squared error of (see PDF for character). The optimal value of c for minimizing the average mean squared error of (see PDF for character) is found to be independent of n and equals c = 1. The optimal value of c for minimizing the average mean squared error of (see PDF for character) is found to be dependent of n with limiting value c = 0.833. This might justifiy to use a near-optimal value of c = 1 in practice which also turns out to be beneficial when constructing confidence intervals of the form (see PDF for character).
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |