1.Hernandez A,Papadakos PJ,Torres A,Gonza ́lez D,Vives M,Ferrando C,et al. Two known therapies could be useful as adjuvant therapy in critical patients infected by COVID-19. Rev Esp Anestesiol Reanim.2020;67(5):245–252.https://doi.org/10.1016/j.redar.2020.03.004PMID:32303365
2.Smirnoff N.Vitamin C booster. Nat Biotechnol.2003;21(2):134–136.https://doi.org/10.1038/nbt0203-134PMID:12560838
3.Macknight RC,Laing WA,Bulley SM,Broad RC,Johnson AA,Hellens RP.Increasing ascorbate levels in crops to enhance human nutrition and plant abiotic stress tolerance.Curr Opin Biotechnol.2017;44:153–160. https://doi.org/10.1016/j.copbio.2017.01.011PMID:28231513
4.Bulley S,Laing W.The regulation of ascorbate biosynthesis. Curr Opin Plan tBiol.2016;33:15–22.https://doi.org/10.1016/j.pbi.2016.04.010PMID:27179323
5.Laing WA,Martınez-Sánchez M,Wright MA,Bulley SM,Brewster D,Dare AP,et al.An upstream open reading frame is essential for feedback regulation of ascorbate biosynthesis in Arabidopsis.Plant Cell.2015;27(3):772–786.https://doi.org/10.1105/tpc.114.133777PMID:25724639
6.Barth C,Gouzd ZA,Steele HP,Imperio RM. A mutation in GDP-mannosepyrophosphorylase causes conditional hypersensitivity to ammonium, resulting in Arabidopsis root growth inhibition,altered ammonium metabolism,and hormone homeostasis. J Exp Bot.2010;61(2):379–394.https://doi.org/10.1093/jxb/erp310PMID:20007685
7.Veljović-Jovanović S,Vidović M,Morina F. Ascorbate as a key player in plant abiotic stress response and tolerance. Ascorbic acid in plant growth,development and stress tolerance: Springer;2017.p. 47–109.
8.Smirnoff N.L-ascorbic acid biosynthesis.Vitam Horm. 2001;61:241–266. https://doi.org/10.1016/s0083-6729(01)61008-2PMID:11153268
9.McDonough MA,Loenarz C,Chowdhury R,Clifton IJ,Schofield CJ.Structural studies on human 2-oxo-glutarate dependent oxygenases.Curr Opin Struct Biol. 2010; 20(6): 659–672. https://doi.org/10.1016/j.sbi.2010.08.006PMID:20888218
10.Gao Y,Han Z, Li Q, Wu Y,Shi X,Ai Z, et al.Vitamin C induces a pluripotent state in mouse embryonic stem cells by modulating microRNA expression. FEBS J. 2015; 282(4): 685–699.https://doi.org/10.1111/febs.13173PMID:25491368
11.Wang J, Yu Y,Zhang Z, Quan R,Zhang H,MaL, et al. Arabidopsis CSN5B interacts with VTC1 and modulates ascorbic acid synthesis.Plant Cell.2013;25(2):625–636.https://doi.org/10.1105/tpc.112.106880PMID:23424245
12.Martınez-Andujar C,Martınez-Perez A,Ferrandez-Ayela A, Albacete A,Martınez-Melgarejo PA,Dodd IC,et al.Impactof overexpression of 9-cis-epoxycarotenoid dioxygenase on growth and geneexpression under salinity stress.Plant Sci.2020;295:110268.https://doi.org/10.1016/j.plantsci. 2019.110268PMID:32534608
13.Mahmood AM,Dunwell JM.Evidence for novel epigenetic marks within plants. AimsGenet. 2019;6(4):70–87.https://doi.org/10.3934/genet.2019.4.70PMID:31922011
14.Smirnoff N.Ascorbic acidmetabolism and functions:A comparison of plants and mammals. Free Radic Biol Med.2018;122:116–129.https://doi.org/10.1016/j.freeradbiomed.2018.03.033PMID:29567393
15.Mahmood AM, Dunwell JM. Nuclear localization signals,geneticcharacterisation and morphological study of wildtype and 14 Arabidopsis mutant lines.Journal of University of Garmian.4(ICBSConference):676–692.
16.Szklarczyk D,Gable AL,Lyon D,Junge A,Wyder S,Huerta-Cepas J, et al.STRINGv11:protein–pro-tein association networks with increased coverage, supporting functional discoveryin genome-wide experimental datasets. Nucleic Acids Res.2019;47(D1):D607–D613.https://doi.org/10.1093/nar/gky1131PMID:30476243
17.Conklin PL,Norris SR,Wheeler GL,Williams EH,Smirnoff N,Last RL.Genetic evidence for the role of GDP-mannose in plant ascorbic acid(vitamin C)biosynthesis.Proc Natl Acad Sci U S A.1999;96(7):4198–4203.https://doi.org/10.1073/pnas.96.7.4198PMID:10097187
18.Gao Y,Badejo AA,Shibata H,Sawa Y,Maruta T, Shigeoka S,et al. Expression analysis of the VTC2 and VTC5 genes encoding GDP-l-galactosephosphorylase, an enzymeinvolved in ascorbate biosynthesis,in Arabidopsis thaliana. Biosci Biotechnol Biochem. 2011;110320:1–6.https://doi.org/10.1271/bbb.110320PMID:21897033
19.Conklin PL,DePaolo D,Wintle B,Schatz C,Buckenmeyer G. Identification of Arabidopsis VTC3 as a putative and unique dual function proteinkinase::proteinphosphatase involved in the regulation of the ascorbic acid pool in plants. J Exp Bot. 2013;64(10):2793–2804.https://doi.org/10.1093/jxb/ert140PMID:23749562
20.Torabinejad J, Donahue JL,Gunesekera BN,Allen-Daniels MJ,Gillaspy GE.VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants. Plant Physiol.2009;150(2):951–961.https://doi.org/10.1104/pp.108.135129PMID:19339506
21.Linster CL,Adler LN,Webb K,Christensen KC,Brenner C,Clarke SG.A secondGDP-L-galactosephosphorylase in Arabidopsi senroute to vitamin C covalent intermediate and substrate requirements for the conserved reaction. J Biol Chem.2008;283(27):18483–18492.https://doi.org/10.1074/jbc.M802594200PMID:18463094
22.Cecchini NM,Monteoliva MI,Alvarez ME.Proline dehydrogenase contributes to pathogen defense inArabidopsis. Plant Physiol.2011;155(4):1947–1959.https://doi.org/10.1104/pp.110.167163PMID:21311034
23.Borges AA,Jimenez-Arias D,Exposito-Rodrı ́guez M,Sandalio LM,Perez JA.Priming crops against biotic and abiotic stresses: MSBasa toolforstudyingmechanisms.Front in Plant Sci.2014;5:642.https://doi.org/10.3389/fpls.2014.00642PMID:25429297
24.Giberti S,Funck D,Forlani G. Δ1-pyrroline-5-carboxylate reductase from Arabidopsis thaliana:stimulation or inhibition by chloride ions and feedback regulation by proline depend on whether NADPH or NADH acts as co-substrate. New Phytol.2014;202(3):911–919.https://doi.org/10.1111/nph.12701PMID:24467670
25.Szklarczyk D,Franceschini A,Wyder S,Forslund K,Heller D,Huerta-Cepas J, et al. STRINGv10:pro-tein–protein interaction networks,integrated over the tree of life. Nucleic Acids Res.2015;43(D1):D447–D452. https://doi.org/10.1093/nar/gku1003PMID:25352553
26.Ye N,Zhu G,Liu Y,Zhang A,Li Y, Liu R,et al. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acidin rice seeds.J Exp Bot.2012;63(5):1809–1822.https://doi.org/10.1093/jxb/err336PMID:22200664
27.Ye N,Zhang J. Antagonism between abscisic acid and gibberellins is partially mediated by ascorbic acid during seed germination in rice.Plant Signal Behav. 2012;7(5):563–565.https://doi.org/10.4161/psb.19919 PMID:22516812
28.Wheeler G,Jones M,Smirnoff N.The biosynthetic pathway of vitaminC in higher plants. Nature. 1998; 393(6683):365–369.https://doi.org/10.1038/30728 PMID:9620799
29.Broad RC,Bonneau JP,Hellens RP,Johnson AA.Manipulation of ascorbate biosynthetic,recycling,and regulatory pathways for improved abiotic stress tolerance in plants. Int J Mol Sci. 2020;21(5):1790.
30.Xia X-J,Zhou Y-H,Shi K,Zhou J, FoyerCH,Yu J-Q. Interplay between reactive oxygen species andhormones in the control of plant development and stress tolerance. J Exp Bot. 2015;66(10):2839–2856.https://doi.org/10.1093/jxb/erv089 PMID:25788732
31.Van Aken O,Van Breusegem F. Licensed to kill: mitochondria,chloroplasts, and cell death. Trends Plant Sci.2015;20(11):754–766.https://doi.org/10.1016/j.tplants.2015.08.002PMID:26442680
32.Suzuki N,Miller G,Sejima H,Harper J, Mittler R.Enhanced seed production under prolonged heatstress conditions in Arabidopsis thaliana plants deficient in cytosolic ascorbate peroxidase2. J Exp Bot.2013;64(1):2532–2563.https://doi.org/10.1093/jxb/ers335PMID:23183257
33.Mittler R,Blumwald E. Genetic engineering for modern agriculture:challenges and perspectives. Annu Rev Plant Biol.2010;61:443–462.https://doi.org/10.1146/annurev-arplant-042809-112116PMID:20192746
34.Lorence A,Chevone BI,Mendes P,Nessler CL.Myo-inositol oxygenase offers a possible entrypoint into plant ascorbate biosynthesis.Plant Physiol. 2004; 134(3): 1200–1205.https://doi.org/10.1104/pp.103.033936PMID:14976233
35.Zhang W,Gruszewski HA,Chevone BI,Nessler CL.An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol .2008; 146(2): 431–440.https://doi.org/10.1104/pp.107.109934PMID:18065557
36.Luo M,Liu X,Singh P,Cui Y,Zimmerli L, Wu K. Chromatin modifications and remodeling in plant abiotic stress responses. Biochim Biophys Acta. 2012;1819(2): 129–136.https://doi.org/10.1016/j.bbagrm.2011.06.008PMID:21708299
37.Cruz-Rus E,Amaya I, Sanchez-Sevilla JF,Botella MA,Valpuesta V.Regulation of L-ascorbic acid content in strawberry fruits.J Exp Bot. 2011;62(12): 4191–4201.https://doi.org/10.1093/jxb/err122PMID:21561953
38.Bohnert HJ,Nelson DE,Jensen RG.Adaptations to environmental stresses. Plant Cell.1995;7(7):1099–1111. https://doi.org/10.1105/tpc.7.7.1099PMID:12242400
39.Colmer T, Voesenek L. Flooding tolerance:suites of plant traits in variable environments.Funct Plant Biol. 2009;36(8):665–681.https://doi.org/10.1071/FP09144PMID:32688679
40.Lewandowska-Sabat AM,Winge P,Fjellheim S,Dørum G,Bones AM,RognliO A.Genome wide transcriptional profiling of acclimation to photoperiod in high-latitude accessions of Arabidopsis thaliana.Plant Sci. 2012;185:143–155.https://doi.org/10.1016/j.plantsci.2011.10.009PMID:22325875
41.DeTullio MC.Is ascorbic acid a key signaling molecule integrating the activities of 2-oxoglutarate-dependentd ioxygenases? Shifting the paradigm.Environ Exp Bot. 2020;178:104173.
42.Macknight RC,Laing WA,Bulley SM,Broad RC,Johnson AA,Hellens RP.Increasing ascorbate levels in cropsto enhance humannutrition and plant abiotic stres stolerance.Current opinionin biotechnology.2017;44:153–160.https://doi.org/10.1016/j.copbio.2017.01.011PMID:28231513
43.Foyer CH,Kyndt T, Hancock RD.Vitamin C in plants: novel concepts,new perspectives, and outstanding issues.Antioxid Redox Signal.2020;32(7):463–485.https://doi.org/10.1089/ars.2019.7819PMID:31701753