Evaluation of film forming polymers to control apple scab (Venturia inaequalis (Cooke) G. Wint.) under laboratory and field conditionsPercival, G. C. and Boyle, S. (2009) Evaluation of film forming polymers to control apple scab (Venturia inaequalis (Cooke) G. Wint.) under laboratory and field conditions. Crop Protection, 28 (1). pp. 30-35. ISSN 0261-2194 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1016/j.cropro.2008.08.005 Abstract/SummaryA detached leaf bioassay was used to determine the influence of several film forming polymers and a conventional triazole fungicide on apple scab (Venturia inaequalis (Cooke) G. Wint.) development under laboratory in vitro conditions, supported by two field trials using established apple cv. Golden Delicious to further assess the efficacy of foliar applied film forming polymers as scab protectant compounds. All film forming polymers used in this investigation (Bond, Designer, Nu-Film P, Spray Gard, Moisturin, Companion PCT12) inhibited germination of conidia, subsequent formation of appressoria and reduced leaf scab severity using a detached leaf bioassay. Regardless of treatment, there were no obvious trends in the percentage of conidia with one to four appressoria 5 days after inoculation. The synthetic fungicide penconazole resulted in the greatest levels of germination inhibition, appressorium development and least leaf scab severity. Under field conditions, scab severity on leaves and fruit of apple cv. Golden Delicious treated with a film forming polymer (Bond, Spray Gard, Moisturin) was less than on untreated controls. However, greatest protection in both field trials was provided by the synthetic fungicide penconazole. Higher chlorophyll fluorescence Fv/Fm emissions in polymer and penconazole treated trees indicated less damage to the leaf photosynthetic system as a result of fungal invasion. In addition, higher SPAD values as measures of leaf chlorophyll content were recorded in polymer and penconazole treated trees. Application of a film forming polymer or penconazole resulted in a higher apple yield per tree at harvest in both the 2005 and 2006 field trials compared to untreated controls. Results suggest application of an appropriate film forming polymer may provide a useful addition to existing methods of apple scab management. (C) 2008 Elsevier Ltd. All rights reserved.
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |