1. Feschotte, C. & Gilbert, C. Endogenous viruses: insights into viral evolution and impact on host biology. Nat. Rev. Genet. 13, 283-296 (2012).
2. Staginnus, C. & Richert-Poggeler, K. R. Endogenous pararetroviruses: two-faced travelers in the plant genome. Trends Plant. Sci. 11, 485-491 (2006).
3. Teycheney, P. Y. & Geering, A. D. W. Endogenous viral sequences in plant genomes. Rec. Adv. Plant Virol. 343-362 (2011).
4. Chen, S. et al. Ancient endogenous pararetroviruses in Oryza genomes provide insights into the heterogeneity of viral gene macroevolution. Genome Biol. Evol. 10, 2686-2696 (2018).
5. Geering, A. D. W., Scharaschkin, T. & Teycheney, P-Y. The classification and nomenclature of endogenous viruses of the family Caulimoviridae. Arch. Virol. 155, 123-131 (2010).
6. Mette, M. F. et al. Endogenous viral sequences and their potential contribution to heritable virus resistance in plants. Embo J. 21, 461-469 (2002).
7. Staginnus, C., Iskra-Caruana, M. L., Lockhart, B., Hohn, T. & Richert-Poggeler, K. R. Suggestions for a nomenclature of endogenous pararetroviral sequences in plants. Arch. Virol. 154, 1189-1193 (2009).
8. Richert-Poggeler, K. R. & Shepherd, R. J. Petunia vein-clearing virus: a plant pararetrovirus with the core sequences for an integrase function. Virology 236, 137-146 (1997).
9. Gregor, W., Mette, M. F., Staginnus, C., Matzke, M. A. & Matzke A. J. A distinct endogenous pararetrovirus family in Nicotiana tomentosiformis, a diploid progenitor of polyploid tobacco. Plant Physiol. 134, 1191-1199 (2004).
10. Gayral P. et al. A single Banana streak virus integration event in the banana genome as the origin of infectious endogenous pararetrovirus. J. Virol. 82, 6697-6710 (2008).
11. Harper, G., Osuji, J. O., Heslop-Harrison, J. S. & Hull, R. Integration of banana streak badnavirus into the Musa genome: molecular and cytogenetic evidence. Virology 255, 207-213 (1999).
12. Ndowora, T. et al. Evidence that Badnavirus infection in Musa can originate from integrated pararetroviral sequences. Virology 255, 214-220 (1999).
13. Andres C. et al. Combatting Cocoa Swollen Shoot Virus Disease: What do we know? Crop Prot. 98, 76-84 (2017).
14. Bhat, A. I., Hohn, T. & Ramasamy, S. 2016. Badnaviruses: The current global scenario. Viruses 8, 177 (2016).
15. Lockhart, B. E. L. Evidence for a double-stranded circular DNA genome in a second group of plant viruses. Phytopathology 80, 127-131 (1990).
16. Chingandu, N. et al. Molecular characterization of previously elusive badnaviruses associated with symptomatic cacao in the New World. Arch. Virol. 162, 1363-1371 (2017).
17. Muller, E. et al. Next generation sequencing elucidates cacao badnavirus diversity and reveals the existence of more than ten viral species. Virus Res. 244, 235-251 (2018).
18. Puig, A. et al. First report of Cacao mild mosaic virus (CaMMV) associated with symptomatic commercial cacao (Theobroma cacao L.) trees in Puerto Rico. Plant Dis. https://doi.org/10.1094/PDIS-04-20-0745-PDN (2020)
Motamayor, J. C. et al. Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS One 3, e3311 (2008).
20. Cornejo, O. E. et al. Population genomic analyses of the chocolate tree, Theobroma cacao L., provide insights into its domestication process. Commun. Biol. 1, 167 (2018).
21. Kane, N. et al. Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA. Am. J. Bot. 99, 320-329 (2012).
22. Morrissey, J., Stack, J. C., Valls, R. & Motamayor, J. C. Low-cost assembly of a cacao crop genome is able to resolve complex heterozygous bubbles. Hortic. Res. 6, 44 (2019).
23. Shahid, M. S., Aboughanem-Sabanadzovic N., Sabanadzovic S. & Tzanetakis I. E. Genomic characterization and population structure of a Badnavirus infecting blackberry. Plant Dis. 101, 110-115 (2017).
24. Yu, H. et al. Endogenous pararetrovirus sequences are widely present in Citrinae genomes. Virus Res. 262, 48-53 (2019).
25. Diaz-Lara, A., Mosier, N. J., Stevens, K., Keller, K. E. & Martin, R. R. Evidence of Rubus Yellow Net Virus integration into the red raspberry genome. Cytogenet. Genome. Res. 160, 329-334 (2020).
26. Geering, A. D. W. et al. Endogenous florendoviruses are major components of plant genomes and hallmarks of virus evolution. Nat. Commun. 5, 5269 (2014).
27. Chabannes, M. et al. Badnaviruses and banana genomes: a long association sheds light on Musa phylogeny and origin. Mol. Plant Pathol. 22, 216-230 (2021).
28. Quainoo, A. K., Wetten, A. C. & Allainguillaume, J. Transmission of cocoa swollen shoot virus by seeds. J. Virol. Methods 150, 45-49 (2008).
29. Le Provost, G., Iskra-Caruana, M-L., Acina, I. & Teycheney, P-Y. Improved detection of episomal Banana streak viruses by multiplex immunocapture PCR. J. Virol. Methods 137, 7-13 (2006).
30. Ramos-Sobrinho, R., Chingandu, N., Gutierrez, O. A., Marelli, J. P. & Brown, J. K. A complex of Badnavirus species infecting cacao reveals mixed infections, extensive genomic variability, and interspecific recombination. Viruses 12, 443-461 (2020).
31. Bomer, M., Rathnayake, A. I., Visendi, P., Silva, G. & Seal, S. E. Complete genome sequence of a new member of the genus Badnavirus, Dioscorea bacilliform RT virus 3, reveals the first evidence of recombination in yam badnaviruses. Arch. Virol. 163, 533-538 (2018).
32. Umber, M. et al. The genome sequence of Dioscorea bacilliform TR virus, a member of the genus Badnavirus infecting Dioscorea spp., sheds light on the possible function of endogenous Dioscorea bacilliform viruses. Arch. Virol. 162, 517-521 (2017).
33. Tripathi, J. N. et al. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun. Biol. 2, 46 (2019).
34. Domfeh, O., Ameyaw, G. A. & Dzahini-Obiatey, H. K. Effects of cacao swollen shoot virus mild strains N1 and SS365B on growth and yield of cacao - a follow-up report. Trop. Plant. Pathol. 44, 503-510 (2019).
35. Koonin, E. V., Makarova, K. S., Wolf, Y. I. & Krupovic, M. Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire. Nat. Rev. Genet. 21, 119-131 (2020).
36. Catoni, M. et al. Virus-mediated export of chromosomal DNA in plants. Nat. Commun. 9, 5308 (2018).
37. Lanaud, C. et al. 1999. Isolation and characterization of microsatellites in Theobroma cacao L. Mol. Ecol. 8, 2141-2143 (1999).
38. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10-12 (2011).
39. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455-477 (2012).
40. Langmead, B. & Salzberg S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359 (2012).
41. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079 (2009).
42. Robinson, J. T., Thorvaldsdottir, H., Wenger, A. M., Zehir, A. & Mesirov, J. P. Variant Review with the Integrative Genomics Viewer. Cancer Res. 77, e31-e34 (2017).
43. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797 (2004).
44. Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biol. 52, 696-704 (2003).
45. Anisimova, M., Gil, M., Dufayard, J-F., Dessimoz, C. & Gascuel, O. 2011. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Systematic Biol., syr041 (2011).
46. Perrier, X. & Jacquemoud-Collet, J. P. DARwin software, http://darwin.cirad.fr/darwin (2006)
47. Hamala, T. et al. Gene expression modularity reveals footprints of polygenic adaptation in Theobroma cacao. Mol. Biol. Evol. 37, 110-123 (2020).