Identification and characterization of the CCoAOMT gene family in apple, Chinese white pear, and peachLi, L., Tao, S., Zhang, H., Huang, W., Dunwell, J. M. ORCID: https://orcid.org/0000-0003-2147-665X and Li, M. (2021) Identification and characterization of the CCoAOMT gene family in apple, Chinese white pear, and peach. Journal of the American Society for Horticultural Science, 146 (3). pp. 184-195. ISSN 0003-1062
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.21273/JASHS04950-20 Abstract/SummaryLignin is one of the main components of plant cell walls, which provides mechanical support for plants and also contributes to resisting against plant pathogenic fungi. In the fruit industry, the lignin content can affect the quality of fruit. The biosynthesis of lignin involves a variety of enzymes, of which caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is a class of methyltransferases that plays an essential role in lignin biosynthesis. Studies have been conducted on the CCoAOMT gene family in several species, including arabidopsis (Arabidopsis thaliana), black poplar (Populus nigra), and cotton (Gossypium hirsutum). Still, there is relatively little research on this gene family in the Rosaceae. In this study, we used bioinformatics to identify and characterize the CCoAOMT gene family in apple (Malus domestica), chinese white pear (Pyrus bretschneideri), and peach (Prunus persica). In total, 35 CCoAOMT genes were identified in the three Rosaceae species: 8 from chinese white pear, 12 from apple, and 15 from peach. By using structure analysis and collinearity analysis, we found 12 conserved motifs and 12 pairs of CCoAOMT genes with collinearity. In the phylogenetic tree, the gene family was mainly divided into two groups. The genes had different expression patterns during the growth and development stage of fruit, a finding that is consistent with the pattern of lignin accumulation. This study will be beneficial for further study of CCoAOMT genes.
DownloadsDownloads per month over past year
Bailey, T.L. and C. Elkan. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Intl. Conf. Intell. Syst. Mol. Biol. 2:28–36.
Boerjan, W., J. Ralph, and M. Baucher. 2003. Lignin biosynthesis. Annu. Rev. Plant Biol. 54:519–546, doi: 10.1146/annurev.arplant.54.031902.134938.
Cao, Y.P., X.X. Li, and L. Jiang. 2019. Integrative analysis of the core fruit lignification toolbox in pear reveals targets for fruit quality bioengineering. Biomolecules 9:504, doi: 10.3390/biom9090504.
Chalmers, D.J. and B. van den Ende. 1975. A reappraisal of the growth and development of peach fruit. Austral. J. Plant Physiol. 2: 623–634, doi: 10.1071/pp9750623.
Chen, B.W., H.L. Liu, Y.F. Xiao, Z.H. Qin, Y. Zhang, and X.N. Zhang. 2018. Directional regulation of lignin monomer synthesis in tobacco by using COMT gene and CCoAOMT gene of Eucalyptus urophylla. China Biotechnol. 38:24–32. (in Chinese), doi: 10.13523/j.cb.20180304.
Chen, C., H. Meyermans, B. Burggraeve, R.M. De Rycke, K. Inoue, V. De Vleesschauwer, M. Steenackers, M.C. Van Montagu, G.J. Engler, and W.A. Boerjan. 2000. Cell-specific and conditional expression of caffeoyl-coenzyme A-3-O-methyltransferase in poplar.
Plant Physiol. 123:853–867, doi: 10.1104/pp.123.3.853.
Daccord, N., J.M. Celton, G. Linsmith, C. Becker, N. Choisne, E.Schijlen, H. van de Geest, L. Bianco, D. Micheletti, R. Velasco,E.A. Di Pierro, J. Gouzy, D.J.G. Rees, P. Guerif, H. Muranty, C.E.
Durel, F. Laurens, Y. Lespinasse, S. Gaillard, S. Aubourg, H. Quesneville, D. Weigel, E. van de Weg, M. Troggio, and E. Bucher. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat. Genet. 49:1099–1106, doi: 10.1038/ng.3886.
Dardick, C.D., A.M. Callahan, R. Chiozzotto, R.J. Schaffer, M.C.Piagnani, and R. Scorza. 2010. Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biol, doi: 10.1186/1741-7007-8-13.
Do, C.T., B. Pollet, J. Thevenin, R. Sibout, D. Denoue, Y. Barriere, C.Lapierre, and L. Jouanin. 2007. Both caffeoyl coenzyme A 3-O methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226:1117–1129, doi:
10.1007/s00425-007-0558-3.
Goldman, N. and Z.H. Yang. 1994. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol. 11:725–736, doi: 10.1093/oxfordjournals.molbev.a040153.
Guindon, S., J.F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk, and O. Gascuel. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59:307–321, doi: 10.1093/sysbio/syq010.
Guo, D., F. Chen, K. Inoue, J.W. Blount, and R.A. Dixon. 2001. Downregulation of caffeic Acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: Impacts on lignin structure and implications for the biosynthesis of G and S lignin.
Plant Cell 13:73–88, doi: 10.2307/3871154.
Guzicka, M., J. Zielinski, D. Tomaszewski, and M. Gawlak.
2012. Anatomical study on the developing pericarp of selected Rosa species (Rosaceae). Dendrobiology 66:77–87, doi:10.4067/S0717-92002012000200014.
Hu, H., Y. Liu, Y.P. Liu, R.J. Wu, B.G. Hua, and Y.N. Wang. 2012. Cloning and expression analysis of PpNST1 and PpSND1 genes from Prunus persica L. Plant Physiol. J. 48:589–596. (in Chinese), doi: 10.13592/j.cnki.ppj.2012.06.003.
Huang, J.S. 2001. Plant pathogenesis and resistance. Springer, Dordrecht, The Netherlands.
Joshi, C.P. and V.L. Chiang. 1998. Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferases. Plant Mol. Biol. 37:663–674, doi: 10.1023/A:1006035210889.
Jung, S., T. Lee, C. Cheng, K. Buble, P. Zheng, J. Yu, J. Humann, S.P. Ficklin, K. Gasic, K. Scott, M. Frank, S. Ru, H. Hough, K. Evans, C. Peace, M. Olmstead, L.W. DeVetter, J. McFerson, M. Coe, J.L. Wegrzyn, M.E. Staton, A.G. Abbott, and D. Main. 2019. 15 years of GDR: New data and functionality in the Genome Database for Rosaceae. Nucleic Acids Res. 47:D1137–D1145, doi: 10.1093/nar/gky1000.
Larkin, M.A., G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson, and D.G. Higgins. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948, doi: 10.1093/
bioinformatics/btm404.
Li, H., C.-H. Huang, and H. Ma. 2019. Whole-genome duplications in pear and apple, p. 279–299. In: S. Korban (ed.). The pear genome. Springer, Dordrecht, The Netherlands.
Li, X., W. Chen, Y. Zhao, Y. Xiang, H. Jiang, S. Zhu, and B.
Cheng. 2013. Downregulation of caffeoyl-CoA O-methyltransferase (CCoAOMT) by RNA interference leads to reduced lignin production in maize straw. Genet. Mol. Biol. 36:540–546, doi:10.1590/S1415-47572013005000039.
Lilien-Kipnis, H. and S. Lavee. 1971. Anatomical changes during the development of ‘Ventura’ peach fruits. J. Hort. Sci. 46:103–110, doi: 10.1080/00221589.1971.11514388.
Liu, X.Y., G.Z. Gao, H.X. Li, and Z.Q. Lei. 2006. Dynamic study on fruit development and the formation of stone cells in ‘Dangshansuli’.
J. Huaibei Coal Ind. Teach. Coll. 27:49–53. (in Chinese), doi:10.3969/j.issn.2095-0691.2006.01.012.
Lopes, M.H., A.S. Barros, N.C. Pascoal, D. Rutledge, I. Delgadillo, and A.M. Gil. 2001. Quantitation of aliphatic suberin in Quercus suber L. cork by FTIR spectroscopy and solid-state 13C-NMR spectroscopy. Biopolymers 62:268–277, doi: 10.1002/1097-0282(2000) 57:6<344:AID-BIP40>3.0.CO;2-#.
Lu, S., J. Wang, F. Chitsaz, M.K. Derbyshire, R.C. Geer, N.R. Gonzales, M. Gwadz, D.I. Hurwitz, G.H. Marchler, J.S. Song, N. Thanki, R.A. Yamashita, M. Yang, D. Zhang, C. Zheng, C.J. Lanczycki, and A. Marchler-Bauer. 2020. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 48:D265–D268, doi: 10.1093/nar/gkz991.
Ni, Z.Y., M. Lu, and L. Fan. 2010. Cloning and Characterization of CCoAOMT Gene from Gossypium hirsutum L. Acta Bot. Bor-Occid Sin. 30:1083–1091. (in Chinese), doi: 10.3724/SP.J.1142.2010.40466.
Raes, J., A. Rohde, J.H. Christensen, Y. Van de Peer, and W. Boerjan. 2003. Genome-wide characterization of the lignification toolbox in Ara�bidopsis. Plant Physiol. 133:1051–1071, doi: 10.1104/pp.103.026484.
Pereira, H. 1988. Chemical composition and variability of cork from Quercus suber L. Wood Sci. Technol. 22:211–218, doi: 10.1007/BF00386015.
Philippe, L., T.Z. Berardini, D. Li, D. Swarbreck, C. Wilks, R. Sasidharan, R. Muller, K. Dreher, D.L. Alexander, M. Garcia-Hernandez, A.S. Karthikeyan, C.H. Lee, W.D. Nelson, L. Ploetz, S. Singh, A. Wensel, and E. Huala. 2012. The Arabidopsis information resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Res. 40:D1202–D1210, doi: 10.1093/nar/gkr1090.
Pospiech, A., J. Bietenhader, and T. Schupp. 1996. Two multifunctional peptide synthetases and an O-methyltransferase are involved in the biosynthesis of the DNA-binding antibiotic and antitumour agent saframycin Mx1 from Myxococcus xanthus. Microbiology
142:741–746, doi: 10.1006/mpat.1996.0023.
Qiao, Y.J., S.L. Zhang, S.T. Tao, Z.M. Zhang, and Z.L. Liu. 2005. Advances in research on developing mechanism of stone cells in pear fruit. J. Fruit Sci. 22:367–371. (in Chinese), doi: 10.3969/j.issn.1009-9980.2005.04.015.
Rakoczy, M., I. Femiak, M. Alejska, M. Figlerowicz, and J.
Podkowinski. 2018. Sorghum CCoAOMT and CCoAOMT-like
gene evolution, structure, expression and the role of conserved amino acids in protein activity. Mol. Genet. Genomics 293:1–13, doi: 10.1007/s00438-018-1441-6.
Rogers, L.A. and M.M. Campbell. 2004. The genetic control of lignin deposition during plant growth and development. New Phytol. 164:17–30, doi: 10.1111/j.1469-8137.2004.01143.x.
Srivastava, S., V. Mudgal, and R.K. Jain. 2012. Lignin-its role and importance in animal nutrition. Intl. J. Livest. Res. 2:7–23.
Suyama, M., D. Torrents, and P. Bork. 2006. PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34:W609–W612, doi: 10.1093/nar/gkl315.
Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731–2739, doi: 10.1093/molbev/msr121.
Tang, H., J.E. Bowers, X. Wang, R. Ming, M. Alam, and A.H. Paterson. 2008. Synteny and collinearity in plant genomes. Science 320: 486–488, doi: 10.1126/science.1153917.
Tang, W., Z. Ding, Z.Q. Zhou, Y.Z. Wang, and L.Y. Guo. 2012. Phylogenetic and pathogenic analyses show that the causal agent of apple ring rot in China is Botryosphaeria dothidea. Plant Dis. 96:486–496, doi: 10.1094/PDIS-08-11-0635.
Tani, E., A.N. Polidoros, E. Flemetakis, C. Stedel, C. Kalloniati, K. Demetriou, P. Katinakis, and A.S. Tsaftaris. 2009. Characterization and expression analysis of AGAMOUS-like, SEEDSTICK-like, and SEPALLATA-like MADS-box genes in peach (Prunus persica) fruit. Plant Physiol. Biochem. 47:690–700, doi: 10.1016/j.plaphy.2009.03.013.
Teng, Y.W., Y.Y. Shen, and X.Z. Zhou. 2005. Cause of rust spots of sand pear and its solution. South China Fruits 34:52–56. (in Chinese), doi:10.3969/j.issn.1007-1431.2005.03.027.
Theologis, A., J.R. Ecker, C.J. Palm, N.A. Federspiel, S. Kaul, O. White, J. Alonso, H. Altafi, R. Araujo, C.L. Bowman, S.Y. Brooks, E. Buehler, A. Chan, Q. Chao, H. Chen, R.F. Cheuk, C.W. Chin, M.K. Chung, L. Conn, A.B. Conway, A.R. Conway, T.H. Creasy, K. Dewar, P. Dunn, P. Etgu, T.V. Feldblyum, J. Feng, B. Fong, C.Y. Fujii, J.E. Gill,
A.D. Goldsmith, B. Haas, N.F. Hansen, B. Hughes, L. Huizar, J.L. Hunter, J. Jenkins, C. Johnson-Hopson, S. Khan, E. Khaykin, C.J. Kim, H.L. Koo, I. Kremenetskaia, D.B. Kurtz, A. Kwan, B. Lam, S. Langin-Hooper, A. Lee, J.M. Lee, C.A. Lenz, J.H. Li, Y. Li, X. Lin, S.X. Liu, Z.A. Liu, J.S. Luros, R. Maiti, A. Marziali, J. Militscher, M.
Miranda, M. Nguyen, W.C. Nierman, B.I. Osborne, G. Pai, J. Peterson, P.K. Pham, M. Rizzo, T. Rooney, D. Rowley, H. Sakano, S.L. Salzberg, J.R. Schwartz, P. Shinn, A.M. Southwick, H. Sun, L.J. Tallon, G. Tambunga, M.J. Toriumi, C.D. Town, T. Utterback, S. Van Aken, M. Vaysberg, V.S. Vysotskaia, M. Walker, D. Wu, G. Yu, C.M. Fraser, J.C. Venter, and R.W. Davis. 2000. Sequence and analysis of
chromosome 1 of the plant Arabidopsis thaliana. Nature 408:816–820, doi: 10.1038/45471.
Valentines, M.C., R. Vilaplana, R. Torres, J. Usall, and C. Larrigaudiere. 2005. Specific roles of enzymatic browning and lignification in apple disease resistance. Postharvest Biol. Technol. 36:227–234, doi:
10.1016/j.postharvbio.2005.01.002.
Vanholme, R., B. Demedts, K. Morreel, J. Ralph, and W. Boerjan. 2010. Lignin biosynthesis and structure. Plant Physiol. 153:895–905, doi: 10.1104/pp.110.155119.
Velasco, R., A. Zharkikh, J. Affourtit, A. Dhingra, A. Cestaro, A. Kalyanaraman, P. Fontana, S.K. Bhatnagar, M. Troggio, D. Pruss, S. Salvi, M. Pindo, P. Baldi, S. Castelletti, M. Cavaiuolo, G. Coppola, F. Costa, V. Cova, A. Dal Ri, V. Goremykin, M. Komjanc, S. Longhi, P. Magnago, G. Malacarne, M. Malnoy, D. Micheletti, M. Moretto, M. Perazzolli, A. Si-Ammour, S. Vezzulli, E. Zini, G. El�dredge, L.M. Fitzgerald, N. Gutin, J. Lanchbury, T. Macalma, J.T. Mitchell, J. Reid, B. Wardell, C. Kodira, Z. Chen, B. Desany, F. Niazi, M. Palmer, T. Koepke, D. Jiwan, S. Schaeffer, V. Krishnan, C. Wu, V.T. Chu, S.T. King, J. Vick, Q. Tao, A. Mraz, A. Stormo, K. Stormo, R. Bogden, D. Ederle, A. Stella, A. Vecchietti, M.M. Kater, S. Masiero, P. Lasserre, Y. Lespinasse, A.C. Allan, V. Bus, D. Chagn�e, R.N. Crowhurst, A.P. Gleave, E. Lavezzo, J.A. Fawcett,
S. Proost, P. Rouze, L. Sterck, S. Toppo, B. Lazzari, R.P. Hellens, C.E. Durel, A. Gutin, R.E. Bumgarner, S.E. Gardiner, M. Skolnick, M. Egholm, Y. Van de Peer, F. Salamini, and R. Viola. 2010. The genome of the domesticated apple (Malus domestica Borkh.). Nat. Genet. 42:833–839, doi: 10.1038/ng.654.
Verde, I., A.G. Abbott, S. Scalabrin, S. Jung, S. Shu, F. Marroni, T. Zhebentyayeva, M.T. Dettori, J. Grimwood, F. Cattonaro, A. Zuccolo, L. Rossini, J. Jenkins, E. Vendramin, L.A. Meisel, V. Decroocq, B. Sosinski, S. Prochnik, T. Mitros, A. Policriti, G. Cipriani, L. Dondini, S. Ficklin, D.M. Goodstein, P. Xuan, C.D. Fabbro, V. Aramini, D. Copetti, S. Gonzalez, D.S. Horner, R. Falchi, S. Lucas,
E. Mica, J. Maldonado, B. Lazzari, D. Bielenberg, R. Pirona, M. Miculan, A. Barakat, R. Testolin, A. Stella, S. Tartarini, P. Tonutti, P. Arus, A. Orellana, C. Wells, D. Main, G. Vizzotto, H. Silva, F. Salamini, J. Schmutz, M. Morgante, and D.S. Rokhsar. 2013. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat. Genet. 45:487–494, doi: 10.1038/ng.2586.
Wang, D.Y., F.Y. Gao, W. Sun, W.K. Rui, S. Khanizadeh, S.L.
Zhang, and S.T. Tao. 2015. Cloning and expression analysis of CCoAOMT gene in fruit of ‘Dangshansuli’. J. Nanjing Agr. Univ. 38:33–40. (in Chinese), doi: 10.7685/j.issn.1000-2030.2015.01.006.
Wu, J., Z. Wang, Z. Shi, S. Zhang, R. Ming, S. Zhu, M.A. Khan, S. Tao, S.S. Korban, H. Wang, N.J. Chen, T. Nishio, X. Xu, L. Cong, K. Qi, X. Huang, Y. Wang, X. Zhao, J. Wu, C. Deng, C. Gou, W. Zhou, H. Yin, G. Qin, Y. Sha, Y. Tao, H. Chen, Y. Yang, Y. Song, D. Zhan, J. Wang, L. Li, M. Dai, C. Gu, Y. Wang, D. Shi, X. Wang, H. Zhang, L. Zeng, D. Zheng, C. Wang, M. Chen, G. Wang, L. Xie, V. Sovero, S. Sha, W. Huang, S. Zhang, M. Zhang, J. Sun, L. Xu, Y. Li,
X. Liu, Q. Li, J. Shen, J. Wang, R.E. Paull, J.L. Bennetzen, J. Wang, and S. Zhang. 2013. The genome of pear (Pyrus bretschneideri Rehd.). Genome Res. 23:396–408, doi: 10.1101/gr.144311.112.
Wu, X., Z. Yan, X. Dong, F. Cao, and M. Li. 2019. Cloning and characterization of a CCoAOMT gene involved in rapid lignification of endocarp in dove tree (Davidia involucrata baill.). Biotechnol. Biotechnol. Equip. 32(6):1398–1406, doi: 10.1080/13102818.2018.1525324.
Wu, X.Y., S.L. Hu, Y. Cao, X.Q. Lu, P. Ren, M.J. Zhou, and X.R. Li. 2012. Cloning of CCoAOMT gene in Neosinocalamus affinis and its bioinformatics analysis. J. Nanjing For. Univ. 36:17–22. (in Chinese), doi: 10.3969/j.issn.1000-2006.2012.03.005.
Xiang, Y.Z., C. Huang, Y. Hu, J. Wen, S.S. Li, T.S. Yi, H.Y. Chen, J. Xiang, and H. Ma. 2017. Evolution of Rosaceae fruit types based on
nuclear phylogeny in the context of geological times and genome duplication. Mol. Biol. Evol. 34:262–281.
Xu, B. and Z. Yang. 2013. PAMLX: A graphical user interface for PAML. Mol. Biol. Evol. 30:2723–2724, doi: 10.1093/molbev/mst179.
Xu, Y., T.F. Pan, and D.M. Pan. 2014. Cloning of caffeoyl-coenzyme A O-methyltransferase gene from Citrus maxima (Burm.) Merr. and its plant expressing vector construction. Chin. Agr. Sci. Bull. 30:148–153. (in Chinese), doi: 10.11924/j.issn.1000-6850.2014-0400
Yang, A. Z., Z.Y. Zhang, A.J. Cao, H.L. Meng, and Y.N. Wang. 2009. Studies of changes in sugar accumulation and lignin deposition during peach fruit endocarp development. Acta Hort. Sin. 36:1113–1119. (in Chinese), doi: 10.16420/j.issn.0513-353x.2009.08.004.
Yang, Z.H. 2000a. Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human influenza virus A. J. Mol. Evol. 51:423–432, doi: 10.1007/s002390010105.
Yang, Z.H. 2000b. Complexity of the simplest phylogenetic estimation problem. Proc. Biol. Sci. 267:109–116, doi: 10.1098/rspb.2000.0974.
Yang, Z.H. and R. Nielsen. 1998. Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J. Mol. Evol. 46:409–418, doi: 10.1093/oxfordjournals.molbev.a040153.
Yao, L.M., X.Q. Hu, F. Zhou, Y.Q. Zheng, G.D. Wang, and X.M.
Liu. 2019. Antisense CCoAOMT gene regulates lignin biosyn�thesis in Betula platyphylla. Bull. Bot. Res. 39:123 –130. (in Chinese), doi: 10.7525/j.issn.1673-5102.2019.01.015.
Yuan, Z.Y., H.L. Zhou, T. Tian, X.X. Zhang, and Y.X. Pan. 2014. Effects and mechanism of aloe vera extracts on control of botrytis in postharvest apples. Trans. Chin. Soc. Agric. Eng. 30:255–263. (in Chinese), doi: 10.3969/j.issn.1002-6819.2014.04.031.
Zaffolon, V., A. Tadiello, A. Rasori, C. Forcato, N. Vitulo, S. Cagnin, A. Ramina, C. Bonghi, and L. Trainotti. 2017. Genome wide transcriptional changes during peach fruit development. 1 Dec. 2017. <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71561>.
Zhang, L.M., H. Kamitakahara, H. Murayama, T. Ohsako, and A.
Itai. 2020. Analysis of fruit lignin content, composition, and linkage types in pear cultivars and related species. J. Agr. Food Chem. 68: 2493–2505, doi:10.1021/acs.jafc.9b07396.
Zhao, H.Y., Q.X. Shen, S.Y. Lu, T. Wang, and Y.R. Song. 2004. Characterization of three rice CCoAOMT genes. Chin. Sci. Bull.49:1390–1394. (in Chinese).
Zhong, R., W.H. Morrison, D.S. Himmelsbach, F.L. Poole, and Z.H. Ye. 2000. Essential role of caffeoyl coenzyme A O-Methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiol. 124:563–577, doi: 10.1104/pp.124.2.563.
Zhong, R., W.H. Morrison, J. Negrel, and Z.H. Ye. 1998. Dual methylation pathways in lignin biosynthesis. Plant Cell 10:2033–2046,doi: 10.2307/3870782. University Staff: Request a correction | Centaur Editors: Update this record |