Agriculture 4.0: is Sub-Saharan Africa ready?Jellason, N. P. ORCID: https://orcid.org/0000-0002-5583-354X, Robinson, E. J. Z. ORCID: https://orcid.org/0000-0002-4950-0183 and Ogbaga, C. C. (2021) Agriculture 4.0: is Sub-Saharan Africa ready? Applied Sciences, 11 (12). 5750. ISSN 2076-3417
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.3390/app11125750 Abstract/SummaryA fourth agricultural revolution, termed agriculture 4.0, is gradually gaining ground around the globe. It encompasses the application of smart technologies such as artificial intelligence, biotechnology, the internet of things (IoT), big data, and robotics to improve agriculture and the sustainability of food production. To date, narratives around agriculture 4.0 associated technologies have generally focused on their application in the context of higher-income countries (HICs). In contrast, in this perspective, we critically assess the place of sub-Saharan Africa (SSA) in this new technology trajectory, a region that has received less attention with respect to the application of such technologies. We examine the continent’s readiness based on a number of dimensions such as scale, finance, technology leapfrogging, institutions and governance, education and skills. We critically reviewed the challenges, opportunities, and prospects of adopting agriculture 4.0 technologies in SSA, particularly with regards to how smallholder farmers in the region can be involved through a robust strategy. We find that whilst potential exist for agriculture 4.0 adoption in SSA, there are gaps in knowledge, skills, finance, and infrastructure to ensure successful adoption.
DownloadsDownloads per month over past year
Meliala, J.; Hubeis, M.; Jahroh, S.; Maulana, A. Position of farmers in agriculture 4.0: Finding from farmers partner of aggregator online vegetables commodity in Indonesia. Arch. Agric. Environ. Sci. 2019, 4, 300–306. [Google Scholar] [CrossRef]
Rapela, M.A. Post-Malthusian Dilemmas in Agriculture 4.0. In Fostering Innovation for Agriculture 4.0: A Comprehensive Plant Germplasm System; Rapela, M.A., Ed.; Springer International Publishing: Cham, Germany, 2019; pp. 1–16. [Google Scholar]
Liu, Y.; Ma, X.; Shu, L.; Hancke, G.P.; Abu-Mahfouz, A.M. From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Trans. Ind. Inform. 2021, 17, 4322–4334. [Google Scholar] [CrossRef]
Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision support systems for agriculture 4.0: Survey and challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
Simpson, J. European Farmers and the British “Agricultural Revolution”. In Exceptionalism and Industrialisation: Britain and its European Rivals, 1688–1815; Cambridge University Press: Cambridege, UK, 2004; pp. 69–85. [Google Scholar] [CrossRef]
Rose, D.C.; Chilvers, J. Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming. Front. Sustain. Food Syst. 2018, 2, 87. [Google Scholar] [CrossRef]
Fuglie, K.; Gautam, M.; Goyal, A.; Maloney, W.F. Harvesting Prosperity: Technology and Productivity Growth in Agriculture; Bank, T.W., Ed.; The World Bank: Washington, DC, USA, 2020. [Google Scholar]
Araújo, S.O.; Peres, R.S.; Barata, J.; Lidon, F.; Ramalho, J.C. Characterising the Agriculture 4.0 Landscape—Emerging Trends, Challenges and Opportunities. Agronomy 2021, 11, 667. [Google Scholar] [CrossRef]
Frankelius, P.; Norrman, C.; Johansen, K. Agricultural Innovation and the Role of Institutions: Lessons from the Game of Drones. J. Agric. Environ. Ethics 2019, 32, 681–707. [Google Scholar] [CrossRef]
Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS Wagening. J. Life Sci. 2019, 90–91, 100315. [Google Scholar] [CrossRef]
Barrett, H.; Rose, D.C. Perceptions of the Fourth Agricultural Revolution: What’s In, What’s Out, and What Consequences are Anticipated? Sociol. Rural. 2020. [Google Scholar] [CrossRef]
Cotter, M.; Asch, F. Editorial: Smallholder targeted Agriculture 4.0 in temperature limited cropping systems. J. Agron. Crop Sci. 2020, 206, 421–422. [Google Scholar] [CrossRef]
Klerkx, L.; Rose, D. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Glob. Food Secur. 2020, 24, 100347. [Google Scholar] [CrossRef]
De Clercq, M.; Vats, A.; Biel, A. Agriculture 4.0-The Future of Farming Technology. World Government Summit. Available online: https://www.oliverwyman.com/content/dam/oliver-wyman/v2/publications/2018/February/Oliver-Wyman-Agriculture-4.0.pdf (accessed on 15 November 2020).
Rose, D.C.; Wheeler, R.; Winter, M.; Lobley, M.; Chivers, C.-A. Agriculture 4.0: Making it work for people, production, and the planet. Land Use Policy 2021, 100, 104933. [Google Scholar] [CrossRef]
Hazell, P.B.R. The Asian Green Revolution; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2009. [Google Scholar]
Das, R.J. The green revolution and poverty: A theoretical and empirical examination of the relation between technology and society. Geoforum 2002, 33, 55–72. [Google Scholar] [CrossRef]
Holmén, H. A Green Revolution for Africa-Does It Need to Be so Controversial? International Centre for Economic Research (ICER): Lund, Sweden, 2003; p. 36. [Google Scholar]
Glaeser, B. The Green Revolution Revisited: Critique and Alternatives; Allen & Unwin: London, UK, 1987; pp. 1–170. [Google Scholar]
Kariuki, J.G. The Future of Agriculture in Africa, 15th ed.; Najam, A., Barakatt, C., Eds.; Boston University: Boston, MA, USA, 2011. [Google Scholar]
AGRA. Our Story-Alliance for a Green Revolution in Africa (AGRA). Available online: https://agra.org/our-story/ (accessed on 5 January 2021).
Wise, T.A. Failing Africa’s Farmers: An Impact Assessment of the Alliance for a Green Revolution in Africa; Global Development and Environment Institute, Tufts University: Medford, OR, USA, 2020; p. 38. [Google Scholar]
Jayne, T.S.; Mather, D.; Mghenyi, E. Principal Challenges Confronting Smallholder Agriculture in Sub-Saharan Africa. World Dev. 2010, 38, 1384–1398. [Google Scholar] [CrossRef]
Goyal, A.; Nash, J. Reaping Richer Returns: Public Spending Priorities for African Agriculture Productivity Growth; The World Bank: Washington, DC, USA, 2017. [Google Scholar]
CTA. The Digitalisation of African Agriculture Report 2018–2019; The Technical Centre for Agricultural and Rural Cooperation (CTA): Wageningen, The Netherlands, 2019; p. 241. [Google Scholar]
Abdallah, A.-H. Does credit market inefficiency affect technology adoption? Evidence from Sub-Saharan Africa. Agric. Financ. Rev. 2016, 76, 494–511. [Google Scholar] [CrossRef]
Lowder, S.K.; Skoet, J.; Raney, T. The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef]
Van Ittersum, M.K.; van Bussel, L.G.J.; Wolf, J.; Grassini, P.; van Wart, J.; Guilpart, N.; Claessens, L.; de Groot, H.; Wiebe, K.; Mason-D’Croz, D.; et al. Can sub-Saharan Africa feed itself? Proc. Natl. Acad. Sci. USA 2016, 113, 14964. [Google Scholar] [CrossRef]
Boko, M.; Niang, I.; Nyong, A.; Vogel, C.; Githeko, A.; Medany, M.; Osman-Elasha, B.; Tabo, R.; Yanda, P. Africa Climate Change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK, 2007; pp. 433–467. [Google Scholar]
Jellason, P.N.; Baines, N.R.; Conway, S.J.; Ogbaga, C.C. Climate Change Perceptions and Attitudes to Smallholder Adaptation in Northwestern Nigerian Drylands. Soc. Sci. 2019, 8, 31. [Google Scholar] [CrossRef]
Jellason, N.P.; Conway, J.S.; Baines, R.N. Understanding impacts and barriers to adoption of climate-smart agriculture (CSA) practices in North-Western Nigerian drylands. J. Agric. Educ. Ext. 2020, 27, 55–72. [Google Scholar] [CrossRef]
World Bank. World Development Report 2008: Agriculture for Development; The World Bank: Washington, DC, USA, 2007; p. 390. [Google Scholar]
Vanlauwe, B.; Coyne, D.; Gockowski, J.; Hauser, S.; Huising, J.; Masso, C.; Nziguheba, G.; Schut, M.; Van Asten, P. Sustainable intensification and the African smallholder farmer. Curr. Opin. Environ. Sustain. 2014, 8, 15–22. [Google Scholar] [CrossRef]
Pretty, J.; Toulmin, C.; Williams, S. Sustainable intensification in African agriculture. Int. J. Agric. Sustain. 2011, 9, 5–24. [Google Scholar] [CrossRef]
Pretty, J.; Bharucha, Z.P. Integrated Pest Management for Sustainable Intensification of Agriculture in Asia and Africa. Insects 2015, 6, 152–182. [Google Scholar] [CrossRef] [PubMed]
Giller, K.E.; Witter, E.; Corbeels, M.; Tittonell, P. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crop. Res. 2009, 114, 23–34. [Google Scholar] [CrossRef]
Baudron, F.; Tittonell, P.; Corbeels, M.; Letourmy, P.; Giller, K.E. Comparative performance of conservation agriculture and current smallholder farming practices in semi-arid Zimbabwe. Field Crop. Res. 2012, 132, 117–128. [Google Scholar] [CrossRef]
Vanlauwe, B.; Wendt, J.; Giller, K.E.; Corbeels, M.; Gerard, B.; Nolte, C. A fourth principle is required to define Conservation Agriculture in sub-Saharan Africa: The appropriate use of fertilizer to enhance crop productivity. Field Crop. Res. 2014, 155, 10–13. [Google Scholar] [CrossRef]
Vohland, K.; Barry, B. A review of in situ rainwater harvesting (RWH) practices modifying landscape functions in African drylands. Agric. Ecosyst. Environ. 2009, 131, 119–127. [Google Scholar] [CrossRef]
Mortimore, M.J. Dryland Development: Success Stories from West Africa. Environment 2005, 45, 10–21. [Google Scholar] [CrossRef]
Jellason, N.P.; Conway, J.S.; Baines, R.N.; Ogbaga, C.C. A review of farming challenges and resilience management in the Sudano-Sahelian drylands of Nigeria in an era of climate change. J. Arid. Environ. 2021, 186, 104398. [Google Scholar] [CrossRef]
Whitfield, S.; Dixon, J.L.; Mulenga, B.P.; Ngoma, H. Conceptualising farming systems for agricultural development research: Cases from Eastern and Southern Africa. Agric. Syst. 2015, 133, 54–62. [Google Scholar] [CrossRef]
Chivasa, W.; Mutanga, O.; Biradar, C. Application of remote sensing in estimating maize grain yield in heterogeneous African agricultural landscapes: A review. Int. J. Remote. Sens. 2017, 38, 6816–6845. [Google Scholar] [CrossRef]
Larson, D.F.; Otsuka, K. Introduction: Why an African Green Revolution Is Needed and Why It Must Include Small Farms. In Pursuit of an African Green Revolution; Springer: Tokyo, Japan, 2016; pp. 1–11. [Google Scholar]
Collier, P.; Dercon, S. African Agriculture in 50 years: Smallholders in a Rapidly Changing World? In Proceedings of the Expert Paper for the FAO Conference on “How to Feed the World in 2050?”, Rome, Italy, 12–13 October 2009. [Google Scholar]
Bronson, K. Looking through a responsible innovation lens at uneven engagements with digital farming. NJAS Wagening. J. Life Sci. 2019, 90–91, 100294. [Google Scholar] [CrossRef]
Van Zijl, G. Digital soil mapping approaches to address real world problems in southern Africa. Geoderma 2019, 337, 1301–1308. [Google Scholar] [CrossRef]
Hello Tractor. Use Hello Tractor to Make Extra Cash with Your Farm Equipment. Available online: https://hellotractor.com/ (accessed on 1 November 2020).
ICRISAT Innovation Hub. Innovation Hub opens for Agri-Tech Entrepreneurs. Available online: https://www.icrisat.org/innovation-hub-opens-for-agri-tech-entrepreneurs/ (accessed on 1 November 2020).
FAO. Digital Innovation for promoting Agriculture 4.0 in the Near East and North Africa. In Proceedings of the FAO Regional Conference for the Near East, Muscat, Oman, 2–4 March 2020. [Google Scholar]
Tittonell, P. Ecological intensification of agriculture—Sustainable by nature. Curr. Opin. Environ. Sustain. 2014, 8, 53–61. [Google Scholar] [CrossRef]
Paliwal, A.; Jain, M. The Accuracy of Self-Reported Crop Yield Estimates and Their Ability to Train Remote Sensing Algorithms. Front. Sustain. Food Syst. 2020, 4, 1–10. [Google Scholar] [CrossRef]
Velasco-Garcia, M.N.; Mottram, T. Biosensors in the livestock industry: An automated ovulation prediction system for dairy cows. Trends Biotechnol. 2001, 19, 433. [Google Scholar] [CrossRef]
Huh, J.-H.; Kim, K.-Y. Time-Based Trend of Carbon Emissions in the Composting Process of Swine Manure in the Context of Agriculture 4.0. Processes 2018, 6, 168. [Google Scholar] [CrossRef]
Alliance for a Green Revolution in Africa (AGRA). Progress Towards Agricultural Transformation; Alliance for a Green Revolution in Africa (AGRA): Nairobi, Kenya, 2016; pp. 105–124. [Google Scholar]
Kwak, S.-Y.; Wong, M.H.; Lew, T.T.S.; Bisker, G.; Lee, M.A.; Kaplan, A.; Dong, J.; Liu, A.T.; Koman, V.B.; Sinclair, R.; et al. Nanosensor Technology Applied to Living Plant Systems. Annu. Rev. Anal. Chem. 2017, 10, 113–140. [Google Scholar] [CrossRef]
Srivastava, A.K.; Dev, A.; Karmakar, S. Nanosensors and nanobiosensors in food and agriculture. Environ. Chem. Lett. 2018, 16, 161–182. [Google Scholar] [CrossRef]
Lew, T.T.S.; Sarojam, R.; Jang, I.-C.; Park, B.S.; Naqvi, N.I.; Wong, M.H.; Singh, G.P.; Ram, R.J.; Shoseyov, O.; Saito, K.; et al. Species-independent analytical tools for next-generation agriculture. Nat. Plants 2020, 6, 1408–1417. [Google Scholar] [CrossRef]
Bolfe, É.; Jorge, L.; Sanches, I.; Junior, A.; Costa, C.; Victoria, D.; Inamasu, R.; Grego, C.; Ferreira, V.; Ramirez, A. Precision and Digital Agriculture: Adoption of Technologies and Perception of Brazilian Farmers. Agriculture 2020, 10, 653. [Google Scholar] [CrossRef]
Knowler, D.; Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 2007, 32, 25–48. [Google Scholar] [CrossRef]
Dosso, M.; Nwankwo, C.I.; Travaly, Y. The Readiness of Innovation Systems for the Fourth Industrial Revolution (4IR) in Sub-Saharan Africa. In Entrepreneurship, Technology Commercialisation, and Innovation Policy in Africa; Daniels, C., Dosso, M., Amadi-Echendu, J., Eds.; Springer International Publishing: Cham, Germany, 2021; pp. 13–32. [Google Scholar]
Wamboye, E.; Tochkov, K.; Sergi, B. Technology Adoption and Growth in sub-Saharan African Countries. Comp. Econ. Stud. 2015, 57, 136–167. [Google Scholar] [CrossRef]
Maree, J.; Piontak, R.; Omwansa, T.; Shinyekwa, I.; Njenga, K. Developmental Uses of Mobile Phones in Kenya and Uganda; Capturing the Gains The University of Manchester: Manchester, UK, 2013; p. 37. [Google Scholar]
Odunze, D.; Mthitwa, H. An Analysis of the Impact of the Use of Mobile Communication Technologies by Farmers in Zimbabwe. A Case Study of Esoko and EcoFarmer Platforms. In Proceedings of the Conversations on Development: Can ICTs Make a Difference in Climate, Political and Health Disturbances? Munster, Germany, 26 May 2015. [Google Scholar]
Van Schalkwyk, F.; Young, A.; Verhulst, S. Esoko–Leveling the Information Playing Field for Smallholder Farmers in Ghana. Available online: https://odimpact.org/files/case-esoko.pdf (accessed on 24 January 2021).
Kinchy, A. Seeds, Science, and Struggle: The Global Politics of Transgenic Crops; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
Daum, T.; Birner, R. The neglected governance challenges of agricultural mechanisation in Africa-insights from Ghana. Food Secur. 2017, 9, 959–979. [Google Scholar] [CrossRef]
Schut, M.; van Asten, P.; Okafor, C.; Hicintuka, C.; Mapatano, S.; Nabahungu, N.L.; Kagabo, D.; Muchunguzi, P.; Njukwe, E.; Dontsop-Nguezet, P.M.; et al. Sustainable intensification of agricultural systems in the Central African Highlands: The need for institutional innovation. Agric. Syst. 2016, 145, 165–176. [Google Scholar] [CrossRef]
Monteleone, S.; Moraes, E.A.D.; Maia, R.F. Analysis of the variables that affect the intention to adopt Precision Agriculture for smart water management in Agriculture 4.0 context. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–6. [Google Scholar]
Pogorelskaia, I.; Várallyai, L. Agriculture 4.0 and the role of education. J. Agric. Inform. 2020, 11, 45–51. [Google Scholar] [CrossRef]
Gollin, D.; Lagakos, D.; Waugh, M. Agricultural Productivity Differences across Countries. Am. Econ. Rev. 2014, 104, 165–170. [Google Scholar] [CrossRef]
AUC. Continental Educational Strategy for Africa (CESA) (2016–2025); African Union Commission (AUC): Addis Ababa, Ethiopia, 2016; p. 44. [Google Scholar]
AUC. Science, Technology and Innovation Strategy for Africa (STISA) 2024; African Union Commission (AUC): Addis Ababa, Ethiopia, 2014; p. 56. [Google Scholar]
AUC. Continental Strategy for Technical and Vocational Education and Training (TVET); African Union Commission (AUC): Addis Ababa, Ethiopia, 2018; p. 40. [Google Scholar]
Tompkins, S. Getting Ready for Agriculture 4.0. Available online: https://www.thestar.com.my/opinion/letters/2020/07/16/getting-ready-for-agriculture-40 (accessed on 19 November 2020).
Joffre, O.M.; Poortvliet, P.M.; Klerkx, L. To cluster or not to cluster farmers? Influences on network interactions, risk perceptions, and adoption of aquaculture practices. Agric. Syst. 2019, 173, 151–160. [Google Scholar] [CrossRef]
AUC. The Digital Transformation Strategy For Africa (2020–2030). Available online: https://au.int/sites/default/files/documents/38507-doc-dts-english.pdf (accessed on 12 January 2021).
Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express 2019, 5, 1–7. [Google Scholar] [CrossRef]
Khaled, S. Are you ready for the Artificial Intelligence in Ag? Western 2020, 2021. Available online: https://www.western-irrigation.com/blog/artificial-intelligence/ (accessed on 28 April 2021).
Fielke, S.J.; Garrard, R.; Jakku, E.; Fleming, A.; Wiseman, L.; Taylor, B.M. Conceptualising the DAIS: Implications of the ‘Digitalisation of Agricultural Innovation Systems’ on technology and policy at multiple levels. NJAS Wagening. J. Life Sci. 2019, 90–91, 100296. [Google Scholar] [CrossRef]
Agozie, E. Nigerian Scientists, Experts Disagree on GM Foods; Premium Times: Abuja, Nigeria, 2019. [Google Scholar]
Francis, C.; Lieblein, G.; Gliessman, S.; Breland, T.A.; Creamer, N.; Harwood, R.; Salomonsson, L.; Helenius, J.; Rickerl, D.; Salvador, R.; et al. Agroecology: The Ecology of Food Systems. J. Sustain. Agric. 2003, 22, 99–118. [Google Scholar] [CrossRef]
Juma, C. The New Harvest: Agricultural Innovation in Africa, 2nd ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar] University Staff: Request a correction | Centaur Editors: Update this record |