• Agacka, M., Depta, A., Börner, M., Doroszewska, T., Hay, F.R., Börner, A., 2013. Viability of Nicotiana spp. seeds stored under ambient temperature. Seed Sci. Technol. 41, 474-478. https://doi.org/10.15258/sst.2013.41.3.15.
• Agacka, M., Laskowska, D., Doroszewska, T., Hay, F.R., Börner, A., 2014. Longevity of Nicotiana seeds conserved at low temperatures in ex situ genebanks. Seed Sci. Technol. 42, 355-362. https://doi.org/10.15258/sst.2014.42.3.05.
• Colville, L., Pritchard, H.W., 2019. Seed life span and food security. New. Phytol. 224, 557-562. https://doi.org/10.1111/nph.16006.
• Cromarty, A.S., Ellis, R.H. and Roberts, E.H., 1982. The Design of Seed Storage Facilities for Genetic Conservation. International Board for Plant Genetic Resources. Rome, Italy.
• Desheva, G., 2016. The longevity of crop seeds stored under long-term condition in the national gene bank of Bulgaria. Agric. (Pol’nohospodárstvo) 62, 90-100.
• Ellis, R.H., Roberts, E.H., 1980. Improved equations for the prediction of seed longevity. Ann. Bot. 45, 13-30. https://doi.org/10.1093/oxfordjournals.aob.a085797.
• Ellis, R.H., Hong, T.D., Roberts, E.H., 1985a. Handbook of Seed Technology for Genebanks. Volume I. Principles and Methodology. International Board for Plant Genetic Resources, Rome, Italy.
• Ellis, R.H., Hong, T.D., Roberts, E.H., 1985b. Handbook of Seed Technology for Genebanks. Volume II. Compendium of Specific Germination Information and Test Recommendations. International Board for Plant Genetic Resources, Rome, Italy.
• Ellis, R.H., Nasehzadeh, M., Hanson, J., Woldemariam, Y., 2018. Medium-term seed storage of 50 genera of forage legumes and evidence-based genebank monitoring intervals. Genet. Resour. Crop Evol. 65, 607–623. https://doi.org/10.1007/s10722-017-0558-5.
• Ellis, R.H., Nasehzadeh, M., Hanson, J., Ndiwa, N., Woldemariam, Y., 2019. Medium-term seed storage of diverse genera of forage grasses, evidence-based genebank monitoring intervals, and regeneration standards. Genet. Resour. Crop Evol. 66, 723-734. https://doi.org/10.1007/s10722-019-00748-y.
• FAO (2010) The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture. FAO, Rome.
• FAO (2014) Genebank Standards for Plant Genetic Resources for Food and Agriculture, Rev Ed. FAO, Rome.
• Fu, Y.-B., 2017. The vulnerability of plant genetic resources conserved ex situ. Crop Sci. 57, 2314-2328. https://doi.org/10.2135/cropsci2017.01.0014.
• Galluzzi, G., Halewood, M., López Noriega, I., Vernooy, R., 2016. Twenty-five years of international exchanges of plant genetic resources facilitated by the CGIAR genebanks: a case study on global interdependence. Biodivers. Conserv. 25, 1421-1446. https://doi.org/10.1007/s10531-016-1109-7.
• Griesbach, R.J., 2013. 150 Years of Research at the United States Department of Agriculture: Plant Introduction and Breeding. U.S. Department of Agriculture, Agricultural Research Service, Washington, DC.
• Hanson, J., Williams, J.T., Freund, R., 1984. Institutes Conserving Crop Germplasm: The IBPGR Global Network of Genebanks. International Board for Plant Genetic Resources, Rome, Italy.
• Hay, F.R., Sershen, 2021. New technologies to improve the ex situ conservation of plant genetic resources, in: Dulloo, E. (Ed.), Plant Genetic Resources: A Review of Current Research and Future Needs. Burleigh Dodds Science Publishing, Cambridge, UK.
• Hay, F.R., Whitehouse, K.J., 2017. Rethinking the approach to viability monitoring in seed genebanks. Conserv. Physiol. 5, cox009. https://doi.org/10.1093/conphys/cox009.
• Hay, F.R., de Guzman, F., Ellis, D., Makahiya, H., Borromeo, T., Sackville Hamilton, N.R., 2013. Viability of Oryza sativa L. seeds stored under genebank conditions for up to 30 years. Genet. Resour. Crop Ev. 60, 275-296. https://doi.org/10.1007/s10722-012-9833-7.
• Hay, F.R., Mead, A., Bloomberg, M., 2014. Modelling seed germination in response to continuous variables: use and limitations of probit analysis and alternative approaches. Seed Sci. Res. 24, 165-186. https://doi.org/10.1017/S096025851400021X.
• Hay, F.R., de Guzman, F., Sackville Hamilton, N.R., 2015. Viability monitoring intervals for genebank samples of Oryza sativa. Seed Sci. & Technol. 43, 218-237. https://doi.org/10.15258/sst.2015.43.2.17.
• Hay, F.R., Lee, J.-S., Lusty, C., 2021. The international genebanks of the CGIAR and seed quality management. Seed Testing Int. 161, 10-13.
• IBPGR, 1976. Report of IBPGR Working Group on Engineering, Design and Cost Aspects of Long-Term Seed Storage Facilities. International Board for Plant Genetic Resources, Rome, Italy.
• IBPGR, 1982. IBPGR Ad Hoc Advisory Committee on Seed Storage: Report of the First Meeting. International Board for Plant Genetic Resources, Rome, Italy.
• IBPGR, 1985. IBPGR Ad Hoc Advisory Committee on Seed Storage: Report of the Third Meeting. International Board for Plant Genetic Resources, Rome, Italy.
• ISTA, 2021. International Rules for Seed Testing. International Seed Testing Association, Bassersdorf, Switzerland.
• James, E., 1972. Organisation of the United States National Seed Storage Laboratory, in: Roberts, E.H. (Ed.), Viability of Seeds. Chapman and Hall, London, pp. 397- 404.
• Jones, T.M., Oyatomi, O.A., Aikinyele, B.O., Odiyi, A.C., Abberton, M.T., Hay, F.R. 2020. Effect of high temperature drying on seed longevity of Bambara groundnut (Vigna subterranea) accessions. Seed Sci. Technol. 48, 413-418. https://doi.org/10.15258/sst.2020.48.3.10.
• Kameswara Rao, N., Dulloo, M.E., Engels, J.M.M., 2017. A review of factors that influence the production of quality seed for long-term conservation in genebanks. Genet. Resour. Crop Evol. 64, 1061-1074. https://doi.org/10.1007/s10722-016-0425-9.
• Kaplan, J.K., 1998. Conserving the world's plants. Agr. Res. 46, 4-9.
• Kloppenburg, J.R., 1988. First the Seed: the Political Economy of Plant Biotechnology 1492-2000. Cambridge University Press, Cambridge.
• Koo, B., Pardey, P.G., Wright, B.D., 2003. The economic costs of conserving genetic resources at the CGIAR centres. Agric. Econ. 29, 287-297. https://doi.org/10.1016/S0169-5150(03)00056-2.
• Lee, H.-S., Jeon, Y.-A., Lee, Y.-Y., Lee, S.-Y., Kim, Y.-G., 2013. Comparison of seed viability among 42 species stored in a genebank. Korean J. Crop Sci. 58, 432-438. https://doi.org/10.7740/kjcs.2013.58.4.432.
• Lee, J.-S., Velasco-Pulzalan, M., Pacleb, M., Valdez, R., Kretzschmar, T., McNally, K.L., Ismail, A.M., Sta. Cruz, P.C., Sackville Hamilton, N.R., Hay, F.R., 2019. Variation in seed longevity among diverse Indica rice varieties. Ann. Bot. 124, 447-460. https://doi.org/10.1093/aob/mcz093.
• Loskutov, I.G., 2020. Vavilov Institute (VIR): historical aspects of international cooperation for plant genetic resources. Genet. Resour. Crop Evol. 67, 2237–2253. https://doi.org/10.1007/s10722-020-00979-4.
• Merritt, D.J., Martyn, A.J., Ainsley, P., Young, R.E., Seed, L.U., Thorpe, M., Hay, F.R., Commander, L.E., Shackelford, N., Offord, C.A., Dixon, K.W., Probert, R.J., 2014. A continental-scale study of seed lifespan in experimental storage examining seed, plant, and environmental traits associated with longevity. Biodivers. Conserv. 23, 1081-1104. https://doi.org/10.1007/s10531-014-0641-6
• Probert, R.J., Adams, J., Coneybeer, J., Crawford, A., Hay, F., 2007. Seed quality for conservation is critically affected by pre-storage factors. Aus. J. Bot. 55, 326-335. https://doi.org/10.1071/BT06046.
• Probert, R.J., Daws, M.I., Hay, F.R., 2009. Ecological correlates of ex situ seed longevity: a comparative study on 195 species. Ann. Bot. 104, 57-69. https://doi.org/10.1093/aob/mcp082
• Sackville Hamilton, N.R., Chorlton, K.H., 1997. Regeneration of accessions in seed collections: a decision guide. Handbook for Genebanks No. 5. International Plant Genetic Resources Institute, Rome, Italy.
• Salazar, D.E., Santos, L.G., Wenzl, P., Hay, F.R., 2020. Effect of dry heat on seed germination of Desmodium and Stylosanthes species. Seed Sci. Technol. 48, 419-437. https://doi.org/10.15258/sst.2020.48.3.11.
• Solberg, S.Ø., Yndgaard, F., Andreasen, C., von Bothmer, R., Loskutov, I.G., Asdal, Å., 2020. Long-term storage and longevity of orthodox seeds: a systematic review. Front. Plant Sci. 11, 1007. https://doi.org/10.3389/fpls.2020.01007.
• Van Treuren, R., de Groot, E.C., van Hintum, Th.J.L., 2013. Preservation of seed viability during 25 years of storage under standard genebank conditions. Genet. Resour. Crop Ev. 60, 1407-1421. https://doi.org/10.1007/s10722-012-9929-0.
• Van Treuren, R., Bas, N., Kodde, J., Groot, S.P.C., Kik, C., 2018. Rapid loss of seed viability in ex situ conserved wheat and barley at 4°C as compared to -20°C storage. Cons. Physiol. 6, coy033. https://doi.org/10.1093/conphys/coy033.
• Vavilov, N.I., 1997. Five Continents. International Plant Genetic Resources Institute, Rome, Italy.
• Walters, C., Wheeler, L.M., Grotenhuis, J.M., 2005. Longevity of seeds stored in a genebank: species characteristics. Seed Sci. Res. 15, 1-20. https://doi.org/10.1079/SSR2004195
• Whitehouse, K.J., Hay, F.R., Ellis, R.H., 2018. Improvement in rice seed storage longevity from high-temperature drying is a consistent positive function of harvest moisture content above a critical value. Seed Sci. Res. 28, 332-339. https://doi.org/10.1017/S0960258518000211.
• Whitehouse, K.J., Hay, F.R., Lusty, C., 2020. Why seed physiology is important for genebanking. Plants 9, 584. https://doi.org/10.3390/plants9050584.
• Yamasaki, F., Domon, E., Tomooka, N., Baba-Kasai, A., Nemoto, H., Ebana, K., 2020. Thirty-year monitoring and statistical analysis of 50 species’ germinability in genebank medium-term storage suggest specific characteristics in seed longevity. Seed Sci. Technol. 48, 269-287. https://doi.org/10.15258/sst.2020.48.2.14.