• 1. IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (ed. Core Writing Team, R.K. Pachauri and L.A. Meyer) (IPCC, Geneva, Switzerland, 2014).
• 2. Batts, G. R., Morison, J. I. L., Ellis, R. H., Hadley, P. & Wheeler, T. R. Effects of CO2 and temperature on growth and yield of crops of winter wheat over four seasons. Eur. J. Agron. 7, 43-52 (1997).
• 3. Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 5, 143-147 (2015).
• 4. Brisson, N. et al. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. F. Crop. Res. 119, 201-212 (2010).
• 5. Food and Agriculture Organization of the United Nations. FAOSTAT. http://www.fao.org/faostat/en/#home (2019).
• 6. Macdonald, A. J., Poulton, P. R., Glendining, M.J. & Powlson, D.S. Long-term agricultural research at Rothamsted. In: Long-Term Farming Systems Research: Ensuring Food Security in Changing Scenarios (eds. Bhullar, G.S & Riar A.), 15-36 (Academic Press/Elsevier Inc., 2020).
• 7. Clarke, J. H. et al. The SAFFIE project report. (ADAS, Boxworth, UK., 2007).
• 8. Rothamsted Research. Broadbalk mean long-term winter wheat grain yields. Electronic Rothamsted Archive https://doi.org/10.23637/KeyRefOABKyields. (2017)
• 9. Vanuytrecht, E., Raes, D., Willems, P. & Geerts, S. Quantifying field-scale effects of elevated carbon dioxide concentration on crops. Clim. Res. 54, 35-47 (2012).
• 10. Mulholland, B. J. et al. Impact of elevated atmospheric CO2 and O3 on gas exchange and chlorophyll content in spring wheat (Triticum aestivum L.). J. Exp. Bot. 48, 1853-1863 (1997).
• 11. Beadle, C. L., Ludlow, M. M. & Honeysett, J. L. Water relations. In: Photosynthesis and Production in a Changing Environment. A Field and Laboratory Manual (eds. Hall, D. O., Scurlock, J. M. O., Bolhàr-Nordenkampf, H. R., Leegood, R. C. & Long, S. P.) 113-128 (Chapman & Hall, London, United Kingdom., 1993).
• 12. Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351-372 (2004).
• 13. Amthor, J. S. Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration. F. Crop. Res. 73, 1-34 (2001).
• 14. Broberg M. C., Högy P., Feng Z. & Pleijel H. Effects of elevated CO2 on wheat yield: Non-linear response and relation to site productivity. Agronomy 9, 243 (2019).
• 15. Olesen, J. E. & Bindi, M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 16, 239-262 (2002).
• 16. Semenov, M. A. & Shewry, P. R. Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci. Rep. 1, 66 (2011).
• 17. Kendon, M., McCarthy, M., Jevrejeva, S. & Legg, T. State of the UK climate 2016. (2017).
• 18. Monteith, J. L. Climatic variation and the growth of crops. Q. J. R. Meteorol. Soc. 107, 749-774 (1981).
• 19. Wheeler, T. R., Craufurd, P. Q., Ellis, R. H., Porter, J. R. & Vara Prasad, P. V. Temperature variability and the yield of annual crops. Agric. Ecosyst. Environ. 82, 159-167 (2000)
• 20. Ferris, R., Ellis, R. H., Wheeler, T. R. & Hadley, P. Effect of High Temperature Stress at Anthesis on Grain Yield and Biomass of Field-grown Crops of Wheat. Ann. Bot. 82, 631-639 (1998).
• 21. Wheeler, T. R., Batts, G. R., Ellis, R. H., Hadley, P. & Morison, J. I. L. Growth and yield of winter wheat (Triticum aestivum) crops in response to CO2 and temperature. J. Agric. Sci. 127, 37 (1996).
• 22. Schmidhuber, J. & Tubiello, F. N. Global food security under climate change. Proc. Natl. Acad. Sci. U. S. A. 104, 19703-8 (2007).
• 23. Fisher, R. A. The Influence of Rainfall on the Yield of Wheat at Rothamsted. Philos. Trans. R. Soc. B Biol. Sci. 213, 89-142 (1925).
• 24. Lawes, J. B. & Gilbert, J. H. Effects of the drought of 1870 on some of the experimental crops at Rothamsted. J. R. Agric. Soc. Engl. 7, 91-132 (1871).
• 25. WMO. Centennial Observing Stations. https://public.wmo.int/en/our-mandate/what-we-do/observations/centennial-observing-stations (2019).
• 26. Etheridge, D. et al. Historical CO2 records from the Law Dome DE08, DE08-2, and DSS ice cores. In Trends: a Compendium of Data on Global Change (Carbon Dioxide Information Analysis Centre, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA, 1998).
• 27. NOAA. Trends in Atmospheric Carbon Dioxide. https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html (2018).
• 28. Rothamsted Research. Meteorological data stored in e-RA. e-RA: the electronic Rothamsted Archive. http://www.era.rothamsted.ac.uk/Met (2019).
• 29. Jamieson, P. D., Semenov, M. A., Brooking, I. R. & Francis, G. S. Sirius: a mechanistic model of wheat response to environmental variation. Eur. J. Agron. 8, 161-179 (1998).
• 30. Asseng, S. et al. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Chang. 3, 827-832 (2013).
• 31. Martre, P. et al. Multimodel ensembles of wheat growth: Many models are better than one. Glob. Chang. Biol. 21, 911-925 (2015).
• 32. Stratonovitch, P. & Semenov, M. A. Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. J. Exp. Bot. 66, 3599-3609 (2015).
• 33. Wallach, D. et al. Multimodel ensembles improve predictions of crop-environment-management interactions. Glob. Chang. Biol. 24, 5072-5083 (2018).
• 34. Senapati, N., Stratonovitch, P., Paul, M. J. & Semenov, M. A. Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. J. Exp. Bot. 70, 2549-2560 (2019).
• 35. Senapati, N. & Semenov, M. A. Large genetic yield potential and genetic yield gap estimated for wheat in Europe. Glob. Food Sec. 24, 100340 (2020).
• 36. Jamieson, P. D., Berntsen, J., Ewert, F., Kimball, B. A., Olesen, J. E., Pinter, P. J., Porter, J. R., Semenov, M. A. Modelling CO2 effects on wheat with varying nitrogen supplies. Agric. Ecosyst. Environ. 82, 27-37 (2000).
• 37. Ewert, F. et al. Effects of elevated CO2 and drought on wheat: Testing crop simulation models for different experimental and climatic conditions. Agric. Ecosyst. Environ. 93, 249-266 (2002).
• 38. Wang, E. et al. The uncertainty of crop yield projections is reduced by improved temperature response functions. Nat. Plants 3, 1-13 (2017).
• 39. Webber, H. et al. Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions. F. Crop. Res. 216, 75-88 (2018).
• 40. Liu, B. et al. Global wheat production with 1.5 and 2.0°C above pre‐industrial warming. Glob. Chang. Biol. 25, 1428-1444 (2019).
• 41. Asseng, S. et al. Climate change impact and adaptation for wheat protein. Glob. Chang. Biol. 25, 155-173 (2019).
• 42. Wolf, J., Evans, L., Semenov, M., Eckersten, H. & Iglesias, A. Comparison of wheat simulation models under climate change. I. Model calibration and sensitivity analyses. Clim. Res. 7, 253-270 (1996).
• 43. Jamieson, P. D., Brooking, I. R., Semenov, M. A. & Porter, J. R. Making sense of wheat development: A critique of methodology. F. Crop. Res. 55, 117-127 (1998).
• 44. Lawless, C., Semenov, M. A. & Jamieson, P. D. A wheat canopy model linking leaf area and phenology. Eur. J. Agron. 22, 19-32 (2005).
• 45. Martre, P. et al. Modelling protein content and composition in relation to crop nitrogen dynamics for wheat. Eur. J. Agron. 25, 138-154 (2006).
• 46. Jamieson, P. D. et al. Reconciling alternative models of phenological development in winter wheat. F. Crop. Res. 103, 36-41 (2007).
• 47. Lawless, C., Semenov, M. A. & Jamieson, P. D. Quantifying the effect of uncertainty in soil moisture characteristics on plant growth using a crop simulation model. F. Crop. Res. 106, 138-147 (2008).
• 48. Gooding, M. W. & Davies, W. P. Wheat Production and Utilization: Systems, Quality and the Environment. Wallingford: CAB International
• 49. Agriculture and Horticulture Development Board. Nutrient Management Guide (RB209). AHDB, Stoneleigh, Warwickshire, UK. https://projectblue.blob.core.windows.net/media/Default/Imported Publication Docs/RB209 Updates 2019/RB2091878_Section1_1901 (2019).
• 50. Pleijel H., Broberg M., Högy P. & Uddling J. Nitrogen application is required to realize wheat yield stimulation by elevated CO2 but will not remove the CO2-induced reduction in grain protein concentration. Global Change Biology 25,1868–1876 (2019)
• 51. Rosenzweig, C., Iglesias, A., Yang, X. B., Epstein, P. R. & Chivian, E. Climate Change and Extreme Weather Events; Implications for Food Production, Plant Diseases, and Pests. Glob. Chang. Hum. Heal. 2, 90-104 (2001).
• 52. Coakley, S. M., Scherm, H. & Chakraborty, S. Climate change and plant disease management. Annu. Rev. Phytopathol. 37, 399-426 (1999).
• 53. Stratonovitch, P., Storkey, J. & Semenov, M. A. A process-based approach to modelling impacts of climate change on the damage niche of an agricultural weed. Glob. Chang. Biol. 18, 2071-2080 (2012).
• 54. Amthor, J. S. Perspective on the relative insignificance of incrasing atmospheric CO2 concentraion on crop yield. Field Crops Res. 58, 109-127 (1998).
• 55. Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nösberger, J. & Ort, D. R. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312, 1918-21 (2006).
• 56. Tubiello, F. N. et al. Crop response to elevated CO2 and world food supply: A comment on “Food for Thought…” by Long et al., Science 312:1918–1921, 2006. Eur. J. Agron. 26, 215-223 (2007).
• 57. IPCC. IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas fluxes in Terrestrial Ecosystems. Summary for Policymakers. Approved Draft. https://www.ipcc.ch/site/assets/uploads/2019/08/4.-SPM_Approved_Microsite_FINAL.pdf (2019).
• 58. Addy, J. W. G., Ellis, R. H., Macdonald, A. J., Semenov, M. A. & Mead, A. Investigating the effects of inter-annual weather variation (1968–2016) on the functional response of cereal grain yield to applied nitrogen, using data from the Rothamsted Long-Term Experiments. Agric. For. Meteorol. 284, 107898 (2020).
• 59. Kristensen, K., Schelde, K. & Olesen, J. E. Winter wheat yield response to climate variability in Denmark. J. Agric. Sci. 149, 33-47 (2011).
• 60. Mills G. et al. Ozone pollution will compromise efforts to increase global wheat production. Global Change Biology 24, 3560-3574. (2018)
• 61. Tubiello, F. N., Donatelli, M., Rosenzweig, C., Stockle, C. O. Effects of cliamte change and elevated CO2 on cropping systems: model predictions at two Italian locations. Eur.J. Agron. 13, 179-189 (2000)
• 62. Jamieson, P. D. & Semenov, M. A. Modelling nitrogen uptake and redistribution in wheat. F. Crop. Res. 68, 21-29 (2000).
• 63. Rothamsted Research. Broadbalk Winter Wheat Experiment. e-RA: the electronic Rothamsted Archive. httpp://www.era.rothamsted.ac.uk/Broadbalk/bbksoils (2021)