Accessibility navigation


EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in Escherichia coli K-12 but functional in E-coli O157 : H7

Cao, J., Woodhall, M. R., Alvarez, J., Cartron, M. L. and Andrews, S. C. ORCID: https://orcid.org/0000-0003-4295-2686 (2007) EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in Escherichia coli K-12 but functional in E-coli O157 : H7. Molecular Microbiology, 65 (4). pp. 857-875. ISSN 0950-382X

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1111/j.1365-2958.2007.05802.x

Abstract/Summary

Escherichia coli possesses iron transporters specific for either Fe2+ or Fe3+. Although Fe2+ is far more soluble than Fe3+, it rapidly oxidizes aerobically at pH >= 7. Thus, FeoAB, the major Fe2+ transporter of E. coli, operates anaerobically. However, Fe2+ remains stable aerobically under acidic conditions, although a low-pH Fe2+ importer has not been previously identified. Here we show that ycdNOB (efeUOB) specifies the first such transporter. efeUOB is repressed at high pH by CpxAR, and is Fe2+-Fur repressed. EfeU is homologous to the high-affinity iron permease, Ftr1p, of Saccharomyces cerevisiae and other fungi. EfeO is periplasmic with a cupredoxin N-terminal domain; EfeB is also periplasmic and is haem peroxidase-like. All three Efe proteins are required for Efe function. The efeU gene of E. coli K-12 is cryptic due to a frameshift mutation - repair of the single-base-pair deletion generates a functional EfeUOB system. In contrast, the efeUOB operon of the enterohaemorrhagic strain, O157:1147, lacks any frameshift and is functional. A 'wild-type' K-12 strain bearing a functional EfeUOB displays a major growth advantage under aerobic, low-pH, low-iron conditions when a competing metal is provided. Fe-55 transport assays confirm the ferrous iron specificity of EfeUOB.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Biological Sciences
ID Code:9960
Uncontrolled Keywords:ENTERICA SEROVAR TYPHIMURIUM, SIGNAL-TRANSDUCTION SYSTEMS, ENVELOPE, STRESS-RESPONSE, IRON TRANSPORT, RESISTANCE DETERMINANT, BACILLUS-SUBTILIS, CLONING VECTORS, FERROUS IRON, FUR REGULON, EXPRESSION

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation