Accessibility navigation


Synthesis of a catechol-based poly(ether ether ketone) ("o-PEEK") by classical step-growth polymerization and by entropically driven ring-opening polymerization of macrocyclic oligomers

Ben-Haida, A., Colquhoun, H.M., Hodge, P. and Williams, D.J. (2006) Synthesis of a catechol-based poly(ether ether ketone) ("o-PEEK") by classical step-growth polymerization and by entropically driven ring-opening polymerization of macrocyclic oligomers. Macromolecules, 39 (19). pp. 6467-6472. ISSN 0024-9297

Full text not archived in this repository.

To link to this article DOI: 10.1021/ma060885k

Abstract/Summary

An amorphous, catechol-based analogue of PEEK ("o-PEEK") has been prepared by a classical step-growth polymerization reaction between catechol and 4,4'-difluorobenzophenone and shown to be readily soluble in a range of organic solvents. Copolymers with p-PEEK have been investigated, including an amorphous 50: 50 composition and a semicrystalline though still organic-soluble material comprising 70% p-PEEK. o-PEEK has also been obtained by entropy-driven ring-opening polymerization of the macrocyclic oligomers (MCO's) formed by cyclo-condensation of catechol with 4,4'-difluorobenzophenone under pseudo-high-dilution conditions. The principal products of this latter reaction were the cyclic dimer 3a (20 wt %), cyclic trimer 3b (16%) cyclic tetramer 3c (14%), cyclic pentamer 3d (13%) and cyclic hexamer 3e (12%). Macrocycles 3a-c were isolated as pure compounds by gradient column chromatography, and the structures of the cyclic dimer 3a and cyclic tetramer 3c were analyzed by single-crystal X-ray diffraction. A mixture of MCO's, 3, of similar composition, was obtained by cyclodepolymerization of high molar mass o-PEEK in dilute soluion.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
ID Code:11023
Uncontrolled Keywords:1,2-DIBENZOYLBENZENE MOIETY, CHAIN INTERCONVERSION, POLYMERS, FRACTIONATION, SYSTEMS

Centaur Editors: Update this record

Page navigation