Accessibility navigation


Consequences of N,C,N '- and C,N,N '-coordination modes on electronic and photophysical properties of cyclometalated aryl ruthenium(II) complexes

Wadman, S.H., Lutz, M., Tooke, D.M., Spek, A.L., Hartl, F., Havenith, R.W.A., van Klink, G.P.M. and van Koten, G. (2009) Consequences of N,C,N '- and C,N,N '-coordination modes on electronic and photophysical properties of cyclometalated aryl ruthenium(II) complexes. Inorganic Chemistry, 48 (5). pp. 1887-1900. ISSN 0020-1669

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1021/ic801595m

Abstract/Summary

The effects of isoelectronic replacement of a neutral nitrogen donor atom by an anionic carbon atom in terpyridine ruthenium(II) complexes on the electronic and photophysical properties of the resulting N,C,N'- and C,N,N'-cyclometalated aryl ruthenium(II) complexes were investigated. To this end, a series of complexes was prepared either with ligands containing exclusively nitrogen donor atoms, that is, [Ru(R-1-tpy)(R-2-tpy)](2+) (R-1, R-2 = H, CO2Et), or bearing either one N,C,N'- or C,N,N'-cyclometalated ligand and one tpy ligand, that is, [Ru(R-1-(NCN)-C-Lambda-N-Lambda)(R-2-tpy)](+) and [Ru(R-1-(CNN)-N-Lambda-N-Lambda)(R-2-tpy)](+), respectively. Single-crystal X-ray structure determinations showed that cyclometalation does not significantly alter the overall geometry of the complexes but does change the bond lengths around the ruthenium(II) center, especially the nitrogen-to-ruthenium bond length trans to the carbanion. Substitution of either of the ligands with electron-withdrawing ester functionalities fine-tuned the electronic properties and resulted in the presence of an IR probe. Using trends obtained from redox potentials, emission energies, IR spectroelectrochemical responses, and the character of the lowest unoccupied molecular orbitals from DFT studies, it is shown that the first reduction process and luminescence are associated with the ester-substituted C,N,N'-cyclometalated ligand in [Ru(EtO2C-(CNN)-N-Lambda-N-Lambda)(tpy)](+). Cyclometalation in an N,C,N'-bonding motif changed the energetic order of the ruthenium d(zx), d(yz), and d(xy) orbitals. The red-shifted absorption in the N,C,N'-cyclometalated complexes is assigned to MLCT transitions to the tpy ligand. The red shift observed upon introduction of the ester moiety is associated with an increase in intensity of low-energy transitions, rather than a red shift of the main transition. Cyclometalation in the C,N,N'-binding motif also red-shifts the absorption, but the corresponding transition is associated with both ligand types. Luminescence of the cyclometalated complexes is relatively independent of the mode of cyclometalation, obeying the energy gap law within each individual series.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
ID Code:11694
Uncontrolled Keywords:ROOM-TEMPERATURE LUMINESCENCE, EXCITED-STATE LIFETIME, RU(II) COMPLEXES, TRIDENTATE LIGANDS, IRIDIUM COMPLEXES, ENERGY-TRANSFER, MULTICHROMOPHORE APPROACH, SPECTROSCOPIC PROPERTIES, ACETONITRILE SOLUTIONS, COORDINATION-COMPOUNDS

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation