Accessibility navigation


Boundary-layer ventilation by baroclinic lifecycles

Sinclair, V.A., Gray, S.L. and Belcher, S.E. (2008) Boundary-layer ventilation by baroclinic lifecycles. Quarterly Journal of the Royal Meteorological Society, 134 (635). pp. 1409-1424. ISSN 1477-870X

Full text not archived in this repository.

To link to this article DOI: 10.1002/qj.293

Abstract/Summary

Ventilation of the boundary layer has an important effect on local and regional air quality and is a prerequisite for long-range pollution transport. Once in the free troposphere, pollutants can alter the chemical composition of the troposphere and impact on the Earth's radiative forcing. Idealised baroclinic life cycles, LC1 and LC2, have been simulated in a three-dimensional dry hemispheric model in the presence of boundary-layer turbulent fluxes. A passive tracer is added to the simulations to represent pollution emitted at, or near, the surface. A simple conveyor-belt diagnostic is developed to objectively identify regions of the boundary layer that can be ventilated by either warm or cold conveyor belts. Transport of pollutants within and above the boundary layer is examined on synoptic scales. Three different physical mechanisms are found to interact with each other to ventilate pollutants out of the boundary layer. These mechanisms are turbulent mixing within the boundary layer, horizontal advection due to Ekman convergence and divergence within the boundary layer, and advection by the warm conveyor belt. The mass of tracer ventilated by the two life cycles is remarkably similar given the differences in frontal structure, suggesting that the large-scale baroclinicity is an effective constraint on ventilation.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical and Physical Sciences > Department of Meteorology
ID Code:1248
Publisher:Royal Meteorological Society

Centaur Editors: Update this record

Page navigation