Accessibility navigation


Contribution of the double layer to transient faradaic processes: implications for hydrodynamic modulated voltammetry of nanostructures

Kuleshova, J., Birkin, P. R. and Elliott, J. M. (2010) Contribution of the double layer to transient faradaic processes: implications for hydrodynamic modulated voltammetry of nanostructures. The Journal of Physical Chemistry C, 114 (32). pp. 13442-13450. ISSN 1932-7447

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1021/jp102308p

Abstract/Summary

The electrochemistry of Pt nanostructured electrodes is investigated using hydrodynamic modulated voltammetry (HMV). Here a liquid crystal templating process is used to produce platinum-modified electrodes with a range of surface areas (roughness factor 42.4-280.8). The electroreduction of molecular oxygen at these nanostructured platinum surfaces is used to demonstrate the ability of HMV to discriminate between faradaic and nonfaradaic electrode reactions. The HMV approach shows that the reduction of molecular oxygen experiences considerable signal loss within the high pseudocapacitive region of the voltammetry. Evidence for the contribution of the double layer to transient mass transfer events is presented. In addition, a model circuit and appropriate theoretical analysis are used to illustrate the transient responses of a time variant faradaic component. This in conjunction with the experimental evidence shows that, far from being a passive component in this system, the double layer can contribute to HMV faradaic reactions under certain conditions.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
ID Code:15999
Publisher:American Chemical Society

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation