Accessibility navigation


SARS coronavirus unique domain: three-domain molecular architecture in solution and RNA binding

Johnson, M. A., Chatterjee, A., Neuman, B. W. and Wuthrich, K. (2010) SARS coronavirus unique domain: three-domain molecular architecture in solution and RNA binding. Journal of Molecular Biology, 400 (4). pp. 724-742. ISSN 0022-2836

Full text not archived in this repository.

To link to this article DOI: 10.1016/j.jmb.2010.05.027

Abstract/Summary

Nonstructural protein 3 of the severe acute respiratory syndrome (SARS) coronavirus includes a "SARS-unique domain" (SUD) consisting of three globular domains separated by short linker peptide segments. This work reports NMR structure determinations of the C-terminal domain (SUD-C) and a two-domain construct (SUD-MC) containing the middle domain (SUD-M) and the C-terminal domain, and NMR data on the conformational states of the N-terminal domain (SUD-N) and the SUD-NM two-domain construct. Both SUD-N and SUD-NM are monomeric and globular in solution; in SUD-NM, there is high mobility in the two-residue interdomain linking sequence, with no preferred relative orientation of the two domains. SUD-C adopts a frataxin like fold and has structural similarity to DNA-binding domains of DNA-modifying enzymes. The structures of both SUD-M (previously determined) and SUD-C (from the present study) are maintained in SUD-MC, where the two domains are flexibly linked. Gel-shift experiments showed that both SUD-C and SUD-MC bind to single-stranded RNA and recognize purine bases more strongly than pyrimidine bases, whereby SUD-MC binds to a more restricted set of purine-containing RNA sequences than SUD-M. NMR chemical shift perturbation experiments with observations of (15)N-labeled proteins further resulted in delineation of RNA binding sites (i.e., in SUD-M, a positively charged surface area with a pronounced cavity, and in SUD-C, several residues of an anti-parallel beta-sheet). Overall, the present data provide evidence for molecular mechanisms involving the concerted actions of SUD-M and SUD-C, which result in specific RNA binding that might be unique to the SUD and, thus, to the SARS coronavirus.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Life Sciences > School of Biological Sciences > Biomedical Sciences
ID Code:17084
Uncontrolled Keywords:Electrophoretic Mobility Shift Assay Models, Molecular Nuclear Magnetic Resonance, Biomolecular Protein Binding Protein Conformation Protein Structure, Secondary Protein Structure, Tertiary RNA, Viral/*metabolism RNA-Binding Proteins/*chemistry/*metabolism SARS Virus/*chemistry Viral Nonstructural Proteins/*chemistry/*metabolism
Publisher:Elsevier

Centaur Editors: Update this record

Page navigation