Accessibility navigation


Photochemical cross-linking of plastically compressed collagen gel produces an optimal scaffold for corneal tissue engineering

Mi, S., Khutoryanskiy, V. V. ORCID: https://orcid.org/0000-0002-7221-2630, Jones, R. R., Zhu, X., Hamley, I. W. ORCID: https://orcid.org/0000-0002-4549-0926 and Connon, C. J. (2011) Photochemical cross-linking of plastically compressed collagen gel produces an optimal scaffold for corneal tissue engineering. Journal of Biomedical Materials Research Part A, 99A (1). pp. 1-8. ISSN 1549-3296

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1002/jbm.a.33152

Abstract/Summary

The experiments were designed to use photochemically cross-linked plastically compressed collagen (PCPCC) gel to support corneal epithelial cells. A plastically compressed collagen (PCC) scaffold was photo cross-linked by UVA in the presence of riboflavin to form a biomaterial with optimal mechanical properties. The breaking force, rheology, surgical suture strength, transparency, ultrastructure, and cell-based biocompatibility were compared between PCPCC and PCC gels. The breaking force increased proportionally with an increased concentration of riboflavin. The stress required to reach breaking point of the PCPCC scaffolds was over two times higher compared to the stress necessary to break PCC scaffolds in the presence of 0.1% riboflavin. Rheology results indicated that the structural properties of PCC remain unaltered after UVA cross-linking. The PCC gels were more easily broken than PCPCC gels when sutured on to bovine corneas. The optical density values of PCPCC and PCC showed no significant differences (p > 0.05). SEM analyses showed that the collagen fibres within the PCPCC gels were similar in morphology to PCC gels. No difference in cell-based biocompatibility was seen between the PCPCC and PCC scaffolds in terms of their ability to support the ex vivo expansion of corneal epithelial cells or their subsequent differentiation evidenced by similar levels of cytokeratin 14. In conclusion, PCPCC scaffold is an optimal biomaterial for use in therapeutic tissue engineering of the cornea.

Item Type:Article
Refereed:Yes
Divisions:Interdisciplinary centres and themes > Chemical Analysis Facility (CAF) > Thermal (CAF)
Life Sciences > School of Chemistry, Food and Pharmacy > School of Pharmacy > Division of Pharmacology
Life Sciences > School of Chemistry, Food and Pharmacy > School of Pharmacy > Pharmaceutics Research Group
Interdisciplinary centres and themes > Chemical Analysis Facility (CAF) > Electron Microscopy Laboratory (CAF)
Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
ID Code:20416
Uncontrolled Keywords:photochemical cross-linking; collagen; hydrogel; scaffold; corneal tissue engineering
Publisher:Wiley-Blackwell

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation