Accessibility navigation


Water vapour continuum absorption in near-infrared windows derived from laboratory measurements

Ptashnik, I. V., McPheat, R. A., Shine, K. P. ORCID: https://orcid.org/0000-0003-2672-9978, Smith, K. M. and Williams, R. G. (2011) Water vapour continuum absorption in near-infrared windows derived from laboratory measurements. Journal of Geophysical Research, 116. D16305. ISSN 2156-2202

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1029/2011JD015603

Abstract/Summary

In most near-infrared atmospheric windows, absorption of solar radiation is dominated by the water vapor self-continuum and yet there is a paucity of measurements in these windows. We report new laboratory measurements of the self-continuum absorption at temperatures between 293 and 472 K and pressures from 0.015 to 5 atm in four near-infrared windows between 1 and 4 m (10000-2500 cm-1); the measurements are made over a wider range of wavenumber, temperatures and pressures than any previous measurements. They show that the self-continuum in these windows is typically one order of magnitude stronger than given in representations of the continuum widely used in climate and weather prediction models. These results are also not consistent with current theories attributing the self continuum within windows to the far-wings of strong spectral lines in the nearby water vapor absorption bands; we suggest that they are more consistent with water dimers being the major contributor to the continuum. The calculated global-average clear-sky atmospheric absorption of solar radiation is increased by 0.75 W/m2 (which is about 1% of the total clear-sky absorption) by using these new measurements as compared to calculations with the MT_CKD-2.5 self-continuum model.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:21481
Publisher:American Geophysical Union

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation