Accessibility navigation


Fast northward energy transfer in the Atlantic due to Agulhas rings

Downloads

Downloads per month over past year

van Sebille , E. and van Leeuwen, P. J. (2007) Fast northward energy transfer in the Atlantic due to Agulhas rings. Journal of Physical Oceanography, 37 (9). pp. 2305-2315. ISSN 0022-3670

[img] Text - Published Version
· Please see our End User Agreement before downloading.

937Kb

To link to this article DOI: 10.1175/JPO3108.1

Abstract/Summary

The adiabatic transit time of wave energy radiated by an Agulhas ring released in the South Atlantic Ocean to the North Atlantic Ocean is investigated in a two-layer ocean model. Of particular interest is the arrival time of baroclinic energy in the northern part of the Atlantic, because it is related to variations in the meridional overturning circulation. The influence of the Mid-Atlantic Ridge is also studied, because it allows for the conversion from barotropic to baroclinic wave energy and the generation of topographic waves. Barotropic energy from the ring is present in the northern part of the model basin within 10 days. From that time, the barotropic energy keeps rising to attain a maximum 500 days after initiation. This is independent of the presence or absence of a ridge in the model basin. Without a ridge in the model, the travel time of the baroclinic signal is 1300 days. This time is similar to the transit time of the ring from the eastern to the western coast of the model basin. In the presence of the ridge, the baroclinic signal arrives in the northern part of the model basin after approximately 10 days, which is the same time scale as that of the barotropic signal. It is apparent that the ridge can facilitate the energy conversion from barotropic to baroclinic waves and the slow baroclinic adjustment can be bypassed. The meridional overturning circulation, parameterized in two ways as either a purely barotropic or a purely baroclinic phenomenon, also responds after 1300 days. The ring temporarily increases the overturning strength. Th presence of the ridge does not alter the time scales.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical and Physical Sciences > Department of Meteorology
No Reading authors. Back catalogue items
ID Code:24131
Uncontrolled Keywords:Waves, oceanic, Energy transport, Atlantic Ocean
Publisher:American Meteorological Society

Download Statistics for this item.

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation