Accessibility navigation


Introductory remarks

Bengtsson, L. (1978) Introductory remarks. In: Proceedings of the ECMWF Seminar on Parameterization of the Physical Processes in the Free Atmosphere. ECMWF Seminar Proceedings. ECMWF, Reading, UK, pp. 1-4.

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Abstract/Summary

The very first numerical models which were developed more than 20 years ago were drastic simplifications of the real atmosphere and they were mostly restricted to describe adiabatic processes. For prediction of a day or two of the mid tropospheric flow these models often gave reasonable results but the result deteriorated quickly when the prediction was extended further in time. The prediction of the surface flow was unsatisfactory even for short predictions. It was evident that both the energy generating processes as well as the dissipative processes have to be included in numerical models in order to predict the weather patterns in the lower part of the atmosphere and to predict the atmosphere in general beyond a day or two. Present-day computers make it possible to attack the weather forecasting problem in a more comprehensive and complete way and substantial efforts have been made during the last decade in particular to incorporate the non-adiabatic processes in numerical prediction models. The physics of radiational transfer, condensation of moisture, turbulent transfer of heat, momentum and moisture and the dissipation of kinetic energy are the most important processes associated with the formation of energy sources and sinks in the atmosphere and these have to be incorporated in numerical prediction models extended over more than a few days. The mechanisms of these processes are mainly related to small scale disturbances in space and time or even molecular processes. It is therefore one of the basic characteristics of numerical models that these small scale disturbances cannot be included in an explicit way. The reason for this is the discretization of the model's atmosphere by a finite difference grid or the use of a Galerkin or spectral function representation. The second reason why we cannot explicitly introduce these processes into a numerical model is due to the fact that some physical processes necessary to describe them (such as the local buoyance) are a priori eliminated by the constraints of hydrostatic adjustment. Even if this physical constraint can be relaxed by making the models non-hydrostatic the scale problem is virtually impossible to solve and for the foreseeable future we have to try to incorporate the ensemble or gross effect of these physical processes on the large scale synoptic flow. The formulation of the ensemble effect in terms of grid-scale variables (the parameters of the large-scale flow) is called 'parameterization'. For short range prediction of the synoptic flow at middle and high latitudes, very simple parameterization has proven to be rather successful.

Item Type:Book or Report Section
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical, Physical and Computational Sciences > Environmental Systems Science Centre
Faculty of Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:31947
Publisher:ECMWF

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation