Accessibility navigation


BTBPs versus BTPhens: some reasons for their differences in properties concerning the partitioning of minor actinides and the advantages of BTPhens

Lewis, F. W., Harwood, L. M. ORCID: https://orcid.org/0000-0002-8442-7380, Hudson, M. J., Drew, M. G.B., Hubscher-Bruder, V., Videva, V., Arnaud-Neu, F., Stamberg, K. and Vyas, S. (2013) BTBPs versus BTPhens: some reasons for their differences in properties concerning the partitioning of minor actinides and the advantages of BTPhens. Inorganic Chemistry, 52 (9). pp. 4993-5005. ISSN 0020-1669

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1021/ic3026842

Abstract/Summary

Two members of the tetradentate N-donor ligand families 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) and 2,9-bis(1,2,4-triazin-3-yl)-1,10-phenanthroline (BTPhen) currently being developed for separating actinides from lanthanides have been studied. It has been confirmed that CyMe4-BTPhen 2 has faster complexation kinetics than CyMe4-BTBP 1. The values for the HOMO−LUMO gap of 2 are comparable with those of CyMe4-BTBP 1 for which the HOMO−LUMO gap was previously calculated to be 2.13 eV. The displacement of BTBP from its bis-lanthanum(III) complex by BTPhen was observed by NMR, and constitutes the only direct evidence for the greater thermodynamic stability of the complexes of BTPhen. NMR competition experiments suggest the following order of bis-complex stability: 1:2 bis-BTPhen complex ≥ heteroleptic BTBP/BTPhen 1:2 bis-complex > 1:2 bis-BTBP complex. Kinetics studies on some bis-triazine N-donor ligands using the stopped-flow technique showed a clear relationship between the rates of metal ion complexation and the degree to which the ligand is preorganized for metal binding. The BTBPs must overcome a significant (ca. 12 kcal mol−1) energy barrier to rotation about the central biaryl C−C axis in order to achieve the cis−cis conformation that is required to form a complex, whereas the cis−cis conformation is fixed in the BTPhens. Complexation thermodynamics and kinetics studies in acetonitrile show subtle differences between the thermodynamic stabilities of the complexes formed, with similar stability constants being found for both ligands. The first crystal structure of a 1:1 complex of CyMe4-BTPhen 2 with Y(NO3)3 is also reported. The metal ion is 10- coordinate being bonded to the tetradentate ligand 2 and three bidentate nitrate ions. The tetradentate ligand is nearly planar with angles between consecutive rings of 16.4(2)°, 6.4(2)°, 9.7(2)°, respectively.

Item Type:Article
Refereed:Yes
Divisions:Interdisciplinary centres and themes > Chemical Analysis Facility (CAF)
Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
ID Code:32312
Publisher:American Chemical Society

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation